

Partout: A Distributed Engine for Efficient
RDF Processing

Luis Galárraga

Télécom ParisTech
Katja Hose

Aalborg University
Ralf Schenkel

University of Passau

Data warehousing

Approaches for RDF Processing are
either slow or not scalable

SPARQL

SPARQL

SPARQL

Query-time data retrieval

Query:
SELECT * WHERE { ..

Query:
SELECT * WHERE { ..

 Good response time

 Not scalable

 Data is up-to-date

 No guarantees on
 response time

Solution: Distributed RDF processing
on warehouse

select ?name where {
 ?city locatedIn Korea
 ?city label ?name
}

Predicate = locatedIn
Object = Korea
Predicate = label
Predicate = capitalOf
Object = Japan

1. Extract boolean predicates
from query load.

2. Apply optimal horizontal
partitioning.

F1: Predicate = 'locatedIn' ^ Object = 'Korea'
F2: Predicate = 'locatedIn' ^ Object ≠ 'Korea'
F3: Predicate = 'label'
F4: Predicate = 'capitalOf'

4. Fragment query graph
encodes fragment dependencies
according to the query load.

F1

F1

F2
F3

F4

Coordinator

Slave 1

select ?name where {
 ?city locatedIn Korea
 ?city label ?name }

Results on BTC 2008 dataset

Query load aware partitioning

Seoul, Daejeon

 Coordinator performs query planning,
 sends plan to slaves and gathers results.

 Slaves store the actual fragments in
RDF-3X [1] indexes and execute plans sent
by coordinator.

Query execution

F4F3

5. Sort fragments in decreasing order by load and each time
assign a fragment to the most beneficial host to guarantee:
(1) local execution for queries and (2) load balancing.

Slave 2

Stats + Fragment
definitions

Host 1
F1
F3

Load(F) = #-of-triples(F) * #-of-subqueries-using(F)

Number of fragments already assigned to host connected
with the new fragment according to fragment query graph.

Benefit(Fragment, Host) ∝
The inverse of the host's current load.

Throughput compared against a centralized RDF
index, a naive partitioning by property and the HAR+
approach, described in [2].

F2

F1 (load = 2 * 1 = 2)
F3 (load = 1 * 1 = 1)
F2 (load = 1 * 0 = 0)
F4 (load = 1 * 0 = 0)

Host 2
F4
F2

F1
F3

F4
F2

Fragments allocation

[1] T. Neumann and G. Weikum. The RDF-3X engine forscalable management of RDF data.VLDB J, 2010

[2] J. Huang, D. J. Abadi, and K. Ren. Scalable SPARQL. Querying of Large RDF Graphs. PVLDB, 2011

	Slide 1

