Partout: A Distributed Engine for Efficient
RDF Processing

Luis Galarraga Katja Hose Ralf Schenkel
Télécom ParisTech Aalborg University University of Passau
Approaches for RDF Processing are Solution: Distributed RDF processing
either slow or not scalable on warehouse
Query-time data retrieval Data warehousing Query load aware partitioning

Seoul locatedIn Korea

select ?name where {

?city locatedln Korea Seoul label "Seoul"
?city label ?name Daejeon Igcatedln Korea
1 Tokyo capitalOf Japan
Tokyo locatedIn Japan

1. Extract boolean predicates RDF
from query load.

2. Apply optimal horizontal
Predicate = locatedIn partitioning.
Object = Korea
Predicate = [abel
Predicate = capitalOf
Object = Japan

F1: Predicate = 'locatedIn' * Object = 'Korea'’
F2: Predicate = 'locatedIn' * Object # 'Korea'
F3: Predicate = 'label’

’ F4: Predicate = 'capitalOf’

Tokyo locatedln Japan
F2

Tokyo capitalOf Japan
F4

Query: > ‘
uery:
SELECT * WHERE { .. Q
SELECT * WHERE { .. ' Seoul locatedIn Korea

Daejeon locatedln Korea

Data IS up-to-date .
N P . Good response time

NO guarantees on

Seoul label "Seoul"

response time Not scalable —
Fragments allocation
Host 2
4. Fragment query graph 5. Sort fragments In decreasing order by load and each time F1 (load =2 *1 = 2) F4
encodes fragment dependencies assign a fragment to the most beneficial host to guarantee: F3 (load =1*1 = 1) F2
according to the query load. (1) local execution for queries and (2) load balancing. F2 (load = 1* 0 = 0)
F4 (load =1*0 =0)
] | i ?} Load(F) = #-of-triples(F) * #-of-subqueries-using(F) Host 1
\/ Number of fragments already assigned to host connected F3
B e :} Benefit(Fragment, Host) with the new fragment according to fragment query graph.
The inverse of the host's current load.
Query execution () Coordinator performs query planning, Results on BTC 2008 dataset

sends plan to slaves and gathers results.

select ?name where { Coordinator < 190
?city locatedIn Korea S
?city label ?name } S 100
7p) N
g
Seoul, Daejeon -%
S5 0
=1

0 100 200 300 400 500 600 700 800

Stats + Fragment * N :
/ﬁ\ concurrent queries
a» @» Partout

= Centralized
== By property == HAR+

| F4
.+ 9 F2 glave 2 Slave 1 . _
)) Throughput compared against a centralized RDF
@ Slaves store the actual fragments in 1 index, a naive partitioning by property and the HAR+
RDF-3X [1] indexes and execute plans sent F3 approach, described in [2].

by coordinator.

1] T. Neumann and G. Welkum. The RDF-3X engine forscalable management of RDF data.VLDB J, 2010
2] J. Huang, D. J. Abadi, and K. Ren. Scalable SPARQL. Querying of Large RDF Graphs. PVLDB, 2011

	Slide 1

