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ABSTRACT
The increasing interest in transparent and fair AI systems has pro-
pelled the research in explainable AI (XAI). One of the main re-
search lines in XAI is post-hoc explainability, the task of explaining
the logic of an already deployed black-box model. This is usually
achieved by learning an interpretable surrogate function that approx-
imates the black box. Among the existing explanation paradigms,
local linear explanations are one of the most popular due to their
simplicity and fidelity. Despite their advantages, linear surrogates
may not always be the most adapted method to produce reliable,
i.e., unambiguous and faithful explanations. Hence, this paper in-
troduces Adapted Post-hoc Explanations (APE), a novel method
that characterizes the decision boundary of a black-box classifier
and identifies when a linear model constitutes a reliable explana-
tion. Besides, characterizing the black-box frontier allows us to
provide complementary counterfactual explanations. Our experimen-
tal evaluation shows that APE identifies accurately the situations
where linear surrogates are suitable while also providing meaningful
counterfactual explanations.
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• Computing methodologies→Machine learning; Machine learn-
ing approaches; Learning linear models; Instance-based learning;
Rule learning.
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1 INTRODUCTION
In the last decade we have witnessed a breakthrough in the capa-
bilities of AI/ML systems, in particular thanks to the emergence of
deep learning. This has made ML-based systems ubiquitous, but has
also increased the public scrutiny of the ethical aspects of automated
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decision support. This interest has given rise to initiatives such as the
GDPR1, and have propelled the research in explainable AI (XAI), a
branch of AI that focuses on models and systems that can explain
their decisions to the layman.

An important line of research in XAI is post-hoc explainability,
a subfield of XAI that studies the techniques to compute explana-
tions for the answers of an already deployed system. This may be
necessary if the system is either too complex or its specifications
inaccessible to the user. The explanation usually consists of a surro-
gate white-box model that mimics the black box, either globally, i.e.,
in the general case, or locally, that is, w.r.t. an instance of interest.
LIME [17], one of the most popular post-hoc explanation methods,
relies on local linear surrogates whose coefficients are used to rank
the input features according to their contribution to the black box’s
outcome on an instance of interest.

Despite the popularity of local linear explanations, they may not
always be the most adapted method to explain a black-box outcome.
Consider the two cases depicted in Figure 1. In Figure 1a, the in-
stance of interest lies in a zone where there is clearly a single local
linear approximation for the black-box classifier. In contrast, the
target instance in Figure 1b depicts a scenario where three possible
linear explanations are possible. Since these approximations exhibit
different inclinations, the attribution scores assigned to the input
features are obviously contradictory – a situation that would harden
interpretation. While we could provide one of the explanations for
Figure 1b, that would tell an incomplete story.

Based on the aforementioned arguments, this article proposes
APE, which stands for Adapted Post-hoc Explanations, a novel
method to determine a priori whether a black-box classifier and a
target instance admit a faithful and unambiguous local linear ex-
planation. When this is not the case, APE recommends a different
explanation paradigm – a rule-based explanation in our experiments.
APE operates by characterizing the classifier’s decision boundary,
which is achieved by identifying the target’s closest counterfactual in-
stance. Counterfactual instances (also called enemies) are instances
that are close to the target instance but are classified differently by
the black box. Such instances can be used as contrastive explanations
that highlight the minimal changes required on the target instance to
change the classifier’s outcome. All in all, our contributions are:
• A definition of suitability for explanations based on local linear

surrogates. This definition builds upon existing notions such as
adherence and locality, which we also define formally.
• The Growing Fields (GF) algorithm for counterfactual search.

GF extends the Growing Spheres (GS) algorithm [13] to account
for categorical attributes as well as the distribution of the input
features using the standardized Euclidean distance as metric.
• The APE oracle, a linear suitability test that tells users whether

a black-box classifier can be locally approximated by a single
1General Data Protection Regulation, https://gdpr-info.eu/
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and faithful linear surrogate. To do so, APE characterizes the
distribution of the instances around the decision boundary.
• The APE algorithm that returns a linear explanation if suitable.

Otherwise APE proposes a rule-based explanation. In all cases
APE computes complementary counterfactual explanations.

The article is structured as follows. After formulating the problem
and introducing preliminary concepts in Section 2, Section 3 elab-
orates on our approach. Then we evaluate APE on a handful of
datasets and classifiers in Section 4. This is followed by a survey of
the related work in Section 5, and a discussion of our insights.

Figure 1: Two explanation scenarios for a classifier and a target
instance (the filled star): (a) a suitable single linear explanation;
(b) three contradictory linear explanations.

2 PRELIMINARIES
Problem Statement. Given a black-box classifier 𝑓 : 𝑋 → 𝑌

trained on a dataset 𝑇 ⊂ 𝑋 , and a target instance 𝑥 = (𝑥1, · · · , 𝑥𝑑 ) ∈
𝑋 , our goal is to construct an oracle that tells us whether a linear
surrogate 𝑔 learned on a locality Φ ⊂ 𝑋 (defined below) is suitable to
explain 𝑓 (𝑥). By “suitable” we mean that two contradictory linear
explanations 𝑔, and 𝑔′ may not have the highest adherence in Φ –
the adherence being the outcome agreement between 𝑓 and 𝑔. In
this formulation, 𝑌 is a finite set of classes, 𝑋 is a multidimensional
domain defined on numerical and categorical features, and Φ is a
region of the space that (i) covers 𝑥 , (ii) is traversed by 𝑓 ’s decision
boundary, and (iii) is maximal, otherwise stated, the surrogate 𝑔

cannot attain the quality guarantee 𝑚(𝑔) ≥ 𝜏 in any locality Φ′ ⊃ Φ
for some adherence metric𝑚. Table 1 provides an overview of the
notation used throughout the paper.

Requirement (i) guarantees that the target instance 𝑥 is included
in the surrogate’s training set. Moreover, requirement (ii) ensures
that this training set is balanced, that is, it contains both instances
inside and outside the class 𝑓 (𝑥). It follows that the minimal locality
satisfying these two requirements should be centered on the decision
boundary – more precisely on 𝑥’s closest counterfactual –, and have
the target instance 𝑥 on the boundary. This is depicted by the inner
dotted circle in Figure 2. Requirement (iii) implies that Φ could
actually be larger if the surrogate 𝑔 still attains a good adherence as
depicted by the bigger dashed circle in Figure 2. In such a case, the
explanation generalizes to larger regions of the data space.

Symbol Definition Symbol Definition

𝑓 ( ·) Black-box classifier 𝑔 ( ·) Linear surrogate
𝑋 , 𝑥 Input domain, target instance 𝑌 Output domain
𝑇 , 𝑡 Input dataset, instance 𝐹 Target’s friend instances
𝐸, 𝑒 Target’s enemies, enemy Φ, 𝜈𝑥 ( ·) Locality, Locality function
𝑍 , 𝑧 Artificial instances, instance 𝑅 Feature-attribution ranking
𝑚 ( ·) Adherence metric 𝜏 Adherence threshold

Table 1: Notation used in the paper.

Figure 2: A linear explanation for a classifier and a target in-
stance 𝑥 . The inner circle (dotted in blue) is the minimal locality
Φ that covers 𝑥 and is traversed by the decision boundary. Local-
ity can be extended (orange circle) and still provide an equally
good linear approximation for the black-box. Friends 𝐹 of 𝑥 are
represented by yellow stars, and enemies 𝐸 by blue circles.

Linear Explanations and Counterfactuals. In order to explain
the outcome 𝑓 (𝑥) of a classifier 𝑓 on a target instance 𝑥 , methods
such as LIME [17] or Local Surrogate [14] provide a signed feature-
attribution ranking 𝑅(𝑔) that consists of ordered sets of features
𝑅+ (𝑔) and 𝑅− (𝑔). The features in 𝑅+ (𝑔) contribute positively to
predicting the class 𝑓 (𝑥), whereas the features in 𝑅− (𝑔) push to-
wards predicting a different class. The ranking is based on the co-
efficients of a linear surrogate 𝑔 that approximates 𝑓 in a locality
or neighborhood around 𝑥 . This locality is defined by a function
𝜈𝑥 : 𝑋 → {0, 1} such that 𝜈𝑥 (𝑥 ′) = 1 if 𝑥 ′ is a neighbor of 𝑥 and
0 otherwise. The set of all possible neighbors of 𝑥 is then defined
by Φ = 𝜈𝑥 (𝑋 ) = {𝑥 ′ ∈ 𝑋 | 𝜈𝑥 (𝑥 ′) = 1}. The implementation of 𝜈𝑥
depends on the explanation method.

In line with existing approaches to compute local explanations [9,
17, 18], we learn 𝑔 on a sample of instances issued from a gene-
rative process that produces artificial instances 𝑧 ∈ 𝑍 ⊂ Φ in 𝑥’s
neighborhood. If available, we also consider real instances that fall
in the neighborhood, i.e., training instances 𝑡 ∈ 𝑇 ∩ Φ. We call a
counterfactual or an enemy [13] any instance 𝑒 ∈ 𝐸 ⊂ 𝑋 such that
𝑓 (𝑒) ≠ 𝑓 (𝑥). Conversely, if 𝑓 (𝑥 ′) = 𝑓 (𝑥), we say that 𝑥 ′ is a friend
of 𝑥 . Counterfactuals close to the target instance 𝑥 can serve as
informative contrastive explanations for 𝑓 (𝑥).

We say two linear explanations 𝑔 and 𝑔′ for 𝑓 (𝑥) are contradic-
tory if they induce different attribute rankings, more formally, if
𝑅(𝑔) ≠ 𝑅(𝑔′). We remark that the implementations of existing linear
explanation modules may be subject to minor stability issues due
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to the non-determinism (randomization) in the instance generation
process. This may produce different linear explanations across mul-
tiple executions of the module on the same inputs. That said, such
issues mostly affect the individual rankings within 𝑅+ (𝑔) and 𝑅− (𝑔).
In other words, instability episodes will rarely change the sign of the
feature attribution. We therefore assume that signs are stable across
multiple executions of the explanation module on the same input.
Adherence and Fidelity. The quality of a surrogate model 𝑔 for a
black-box classifier 𝑓 is evaluated through the notions of adherence
and fidelity. The adherence of a surrogate model 𝑔 for a black-box
model 𝑓 is the degree of agreement between 𝑓 ’s and 𝑔’s outcomes.
The fidelity, on the other hand, assesses the surrogate’s ability to
identify the features truly employed by the black-box model. When
𝑓 is a true black box, users can only rely on the adherence to estimate
the quality of explanations.
Existing Methods. LIME [17] is the most prominent approach to
compute local linear explanations. For tabular data, LIME learns
the surrogate 𝑔 on a weighted neighborhood 𝑍 ⊂ Φ generated by
perturbing the numerical attributes of 𝑥 according to a 𝜇-centered
and 𝜎-scaled normal distribution, where 𝜇 and 𝜎 are the attribute’s
mean and std. deviation in the training set. For categorical attributes,
LIME uses the empirical distribution of the attribute values. The
neighbors’ weights are assigned according to an exponential kernel
on the 𝑙2-distance to 𝑥 so that closer neighbors are given more
importance when learning the surrogate. It has been shown [14]
that we can learn more locally faithful explanations if we apply
LIME on a neighborhood traversed by 𝑓 ’s decision boundary. In that
vibe, the Local Surrogate (LS) approach [14] centers the generative
process not on the target instance 𝑥 but on its closest enemy 𝑒 –
which by itself constitutes a complementary explanation for 𝑓 (𝑥).
LS then learns a linear surrogate on a neighborhood defined by a
hyper-sphere centered at 𝑒, as depicted by the inner circle in Figure 2.
On the downside, LS does not support categorical attributes. One
of our contributions – the Growing Fields algorithm – proposes a
solution to this limitation.

3 ADAPTED POST-HOC EXPLANATIONS
We now elaborate on APE, our approach to compute adapted post-
hoc explanations on tabular data for a target instance 𝑥 and a black-
box classifier 𝑓 . When the decision frontier of 𝑓 admits a single
local linear surrogate according to our problem statement in Sec-
tion 2, APE returns a linear-based explanation complemented with a
counterfactual explanation. Otherwise, APE recommends a different
explanation paradigm such as a rule-based surrogate.

APE is detailed in Algorithm 1. In a first stage (line 1), APE
invokes the Growing Fields algorithm to find the black-box deci-
sion boundary. This is achieved by identifying 𝑥’s closest enemy
– denoted by 𝑒. Then, APE generates a set of random instances 𝑍
uniformly distributed in a locality around 𝑒 (line 3). This locality con-
stitutes a field, which APE samples using the F generation process
explained later. The size of the field depends on a radius parameter
that is proportional to dist (𝑥, 𝑒), i.e., the distance between 𝑥 and its
closest enemy. More precisely, we set 𝑟 = 1/𝛿 × dist (𝑥, 𝑒), where
𝛿 is the farthest distance from 𝑥 to a real instance in 𝑇 , i.e., 𝑓 ’s
training set. By normalizing the radius, we (a) provide users with a
data-agnostic notion of distance, and (b) reduce the risk of sampling

instances beyond the limits of the attribute domains. By centering the
generative process at 𝑒 with radius 𝑟 , APE makes sure that 𝑍 covers
𝑥 and contains diverse subsets 𝐸 and 𝐹 of friends and enemies of 𝑥
– in concordance with the requirements (i) and (ii) in the problem
statement in Section 2. The F generation procedure as well as the
Growing Fields algorithm are detailed in Section 3.1.

In the next step (line 4), APE characterizes the decision boundary
of 𝑓 . To this end, the algorithm invokes the APE oracle (Section 3.2),
which runs efficient unimodality and linear separability tests [20, 23]
on 𝐸 and 𝐹 to determine whether a linear surrogate is suitable or not.
The oracle recommends a linear explanation if both sets 𝐸 and 𝐹

exhibit a unimodal distribution, that is, if there is only one cluster per
class and we can separate those clusters with a single linear surrogate.
In that case, APE returns a linear explanation and the closest enemy
of 𝑥 as a counterfactual explanation for 𝑓 (𝑥). The linear explanation
is learned via an extension of Local Surrogate [14], called LSAPE ,
applied on a superset of 𝑍 , consisting of real and artificial instances.
Those instances constitute a field with a radius of at least 𝑟 . We
elaborate on those details in Section 3.3.

When the APE oracle deems linear explanations unsuitable, namely
because the instances in 𝐸 or 𝐹 form multiple clusters, or because
𝑍 is not linearly separable, APE proposes a rule-based surrogate.
Alternatives are Anchors [18] or shallow decision trees. In the first
case, the user obtains a single rule of the form 𝑅 : 𝑝 ⇒ 𝑓 (𝑥) where
𝑝 is a set of conditions, and 𝑅 has a precision of at least 𝜏 [18]. In
the second case, the user gets a decision tree trained on a superset of
𝑍 . Since the decision boundary may consist of several disconnected
instance clusters, APE completes its explanation with a counterfac-
tual instance per cluster in 𝐸 (see Section 3.4). That way users can
have a comprehensive view of the different ways to change the black
box’s outcome 𝑓 (𝑥).

In the next sections we elaborate on APE’s building blocks,
namely the F instance generation process, the Growing Fields algo-
rithm, the APE oracle, and the procedures to compute the linear and
rule-based surrogates.

Algorithm 1 APE
Require: a training dataset 𝑇 ⊂ 𝑋 , a target instance 𝑥 = (𝑥1, . . . , 𝑥𝑑 ) ∈

𝑋 , a black-box classifier 𝑓 : 𝑋 → 𝑌 ; number of samples 𝑛
Ensure: one or multiple counterfactual instances, a surrogate classifier 𝑔

1: 𝑒 ← GROWING FIELDS (𝑇, 𝑥, 𝑓 )
2: 𝑟 ← 1/𝛿 × dist (𝑥, 𝑒) // 𝛿 is the largest distance in𝑇
3: 𝑍 ∼ F(𝑇, 𝑟, 𝑒)𝑖≤𝑛
4: if APE ORACLE (𝑍, 𝑥, 𝑓 ) then
5: return 𝑒, 𝐿𝑆APE (𝑍, 𝑓 , 𝑥, 𝑒) trained on 𝑒-centered field of radius 𝑟 ′ ≥ 𝑟

6: else
7: return {𝑒1, . . . , 𝑒𝑘 } ⊂ 𝑍 , RULE-BASED SURR. (𝑓 )
8: end if

3.1 Growing Fields
To compute the closest enemies to a target instance 𝑥 given a classi-
fier 𝑓 (line 1 in Algorithm 1), APE resorts to an enhancement of the
Growing Spheres (GS) algorithm [13] that we call Growing Fields
(GF). GS searches for enemies of 𝑥 by drawing instances uniformly
within the volume of a 𝑙2-sphere of radius 𝑟 centered at 𝑥 . The value
of 𝑟 is adjusted so that the resulting sphere traverses 𝑓 ’s decision
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boundary and encompasses enemies of 𝑥 lying close to the border.
GF proceeds likewise, but tackles some of the limitations of GS as
explained next.
Attribute-dependant perturbations. By drawing instances uni-
formly in a 𝑙2-sphere, GS assumes that all numerical attributes should
be perturbed at the same rate. In reality, the attributes may have dif-
ferent amplitudes, variances, and distributions. Consequently, in GF
the perturbation added to a numerical attribute 𝑥𝑖 follows a uniform
distribution that depends on both the radius 𝑟 and the attribute’s
domain amplitude 𝐴𝑖 (𝑇 ), and at the same time preserves the at-
tribute’s std. deviation in the input dataset 𝑇 – denoted by 𝜎𝑖 (𝑇 ).
This implies that the vicinity generated by GF around an instance 𝑥
is not anymore a sphere, but rather a volume or, as we call it, a field.
The actual shape of this field depends on the distance function. We
highlight that taking into account the data distribution guarantees a
data-aware exploration of the space, which results in a speed-up of
up to 2 orders of magnitude w.r.t. GS.
Distance. Another limitation of GS is that all attributes have the
same impact when computing the distance between two instances.
That said, a salary “distance” of 30 EUR is insignificant compared
to an age “distance” of 30 years. On those grounds, APE normalizes
the contribution of attribute 𝑖 using the mean 𝜇𝑖 and std. deviation 𝜎𝑖
in the training set, which boils down to the standardized Euclidean
distance2:

dist (𝑥, 𝑥 ′) =

√√√
𝑑∑︁
𝑖=1
(
(𝑥𝑖 − 𝜇𝑖 ) − (𝑥 ′𝑖 − 𝜇𝑖 )

𝜎𝑖
)2 (1)

Equation 1 assumes that the categorical attributes have been one-hot
encoded.
Support for categorical features. The original GS algorithm does
not support categorical attributes such as the sex or the marital
status of a person. We can now handle those attributes by treating
them as random continuous variables uniformly distributed in [0, 𝑟 ].
Consider a field with radius 𝑟 = 0.5 and a target instance with
the attribute sex = 𝐹 . If by drawing a random value in [0, 0.5] we
obtain for example, a value of 0.2, we interpret it as throwing a
biased coin that keeps the sex of the target instance with probability
1 − 0.2 = 0.8. If the attribute defines more than two categories,
e.g., {single, married, divorced, widowed} and we have to change
the category, we use the re-adjusted empirical probabilities of the
other categories in the input dataset 𝑇 to randomly choose the new
category.

Algorithm 2 details the resulting generation process, called F
(which stands for field), used to draw random artificial instances with
both numerical and categorical attributes. The result of integrating
F into GS gives rise to the Growing Fields algorithm detailed in
Algorithm 3. Growing Fields starts with an initial field of radius 𝑟0
and reduces it until no enemies are found (lines 3-6). In a second
stage, the field is gradually expanded until the decision boundary
is crossed and close counterfactual instances can be reported (lines
7-10). The algorithm then returns 𝑥’s closest counterfactual.

2This is a special case of the Mahalanobis distance when the covariance matrix is
diagonal.

Algorithm 2 The F instance generation process

Require: a dataset 𝑇 ⊂ 𝑋 , a radius 𝑟 ∈ (0, 1], an instance 𝑥 =

(𝑥1, . . . , 𝑥𝑑 ) ∈ 𝑋
Ensure: An artificial instance 𝑧 = (𝑧1, . . . , 𝑧𝑑 )

1: for 𝑖 ∈ 1 . . . 𝑑 do
2: if 𝑥𝑖 is numerical then // 𝐴𝑖 = max𝑖 −min𝑖
3: 𝑎 = min(0, 𝑟 ×𝐴𝑖 (𝑇 ) − 𝜎𝑖 (𝑇 ))
4: 𝑏 = 𝑎 + 𝜎𝑖 (𝑇 )
5: 𝑧𝑖 ← 𝑥𝑖 + 𝜌𝑘 with 𝜌𝑘 ∼ U(𝑎, 𝑏)
6: else
7: 𝑧𝑖 ← (𝑥𝑖 with prob. 1 − 𝜌𝑘 ) with 𝜌𝑘 ∼ U(0, 𝑟 )
8: end if
9: end for

10: return 𝑧

Algorithm 3 GROWING FIELDS (GF)

Require: a dataset 𝑇 ⊂ 𝑋 , a target instance 𝑥 = (𝑥1, . . . , 𝑥𝑑 ) ∈ 𝑋 ,
a classifier 𝑓 : 𝑋 → 𝑌 ,
Hyper-parameters: 𝑟0 = 0.1, 𝜃 = 1.8, 𝑛 = 2000 as defined by
GS [13]

Ensure: Set 𝑍 of instances; resulting field radius 𝑟
1: 𝑟 ← 𝑟0
2: 𝑍 ∼ F (𝑇, 𝑟, 𝑥)𝑖≤𝑛
3: while ∃ 𝑒 ∈ 𝑍 | 𝑓 (𝑒) ≠ 𝑓 (𝑥) do
4: 𝑟 ← 𝑟/2
5: Update 𝑍 ∼ F (𝑇, 𝑟, 𝑥)𝑖≤𝑛
6: end while
7: while � 𝑒 ∈ 𝑍 | 𝑓 (𝑒) ≠ 𝑓 (𝑥) do
8: 𝑟 ← min(1, 𝜃 × 𝑟 )
9: Update 𝑍 ∼ F (𝑇, 𝑟, 𝑥)𝑖≤𝑛

10: end while
11: return argmin𝑒 {dist(𝑥, 𝑒) | 𝑒 ∈ 𝑍 }

3.2 APE Oracle
The core of the APE algorithm is the APE oracle described in Al-
gorithm 4. This oracle determines whether the black-box decision
boundary is separable by a single linear approximation. To achieve
this, the oracle applies the Libfolding unimodality test [20] sepa-
rately on the sets of friends 𝐹 and enemies 𝐸 of the target instance 𝑥
in 𝑍 . If the test is passed, it means that 𝐹 and 𝐸 form each a single
cluster in 𝑍 . This, however, does not suffice for linear separability;
ergo the oracle carries out a quick linear separability test to deter-
mine whether these clusters of friends and enemies can be told apart
with a linear approximation. The test is actually carried out on a
balanced sample 𝑍𝑏 ⊆ 𝑍 . We enforce 𝑍𝑏 to contain an equal number
of friends and enemies of 𝑥 , because 𝑍 can be highly imbalanced
towards the enemies of 𝑥 for very small localities.

There are multiple methods to determine whether there exists
a linear function that separates a two-class dataset. Such methods
range from linear and quadratic programming to approaches based
on computational geometry and neural networks [4]. Nevertheless,
all these strategies are at least as expensive as running a linear
regression on the input dataset. On those grounds, APE resorts to
a simple test based on the Thornton’s separability index si [23]. If
Γ𝑋 ′ (𝑥) returns the closest neighbor 𝑥 ′ of 𝑥 in a set 𝑋 ′ ⊆ 𝑋 , the
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separability index measures the ratio of instances for which that
closest neighbor is a friend of 𝑥 . In our setting, this can be computed
according to the following formula:

si(𝑋 ′) =
∑
𝑥 ′∈𝑋 ′ 1𝑓 (Γ𝑋 ′ (𝑥 ′))=𝑓 (𝑥 ′)

|𝑋 ′ | .

We remark that si lies between 0 and 1 and that higher values denote
higher separability. Line 2 in Algorithm 4 checks if si((𝑇∩Φ)∪𝑍𝑏 ) =
1. That is, the test also considers real instances that fall within the
field from which 𝑍 was drawn. If the test is passed, the decision
boundary is considered linearly separable enough and the oracle
returns true.

Algorithm 4 APE ORACLE

Require: instances 𝑍 ⊂ 𝑋 , target instance 𝑥 = {𝑥1, . . . , 𝑥𝑑 } ∈ 𝑋 ,
classifier 𝑓 : 𝑋 → 𝑌

Ensure: Is 𝑓 linearly separable in 𝑍 w.r.t. the class 𝑓 (𝑥)?
1: if 𝐸 ⊂ 𝑍 and 𝐹 ⊂ 𝑍 are unimodal then
2: if 𝑍 is linearly separable w.r.t. 𝑓 then
3: return True
4: end if
5: end if
6: return False

3.3 Linear Explanations
If the APE oracle estimates that 𝑓 ’s decision boundary is linearly
separable around the target instance 𝑥 , APE resorts to the routine
LSAPE (described in Algorithm 5) to learn a linear surrogate 𝑔 on
𝑍 and to provide an explanation for 𝑓 (𝑥). We could center the
generative process to learn 𝑔 on the target instance 𝑥 as in standard
LIME, or around the decision boundary as in LS. We opt for the
latter alternative since LS has been shown to identify more accurately
the features that influence the black box locally [14].

We recall that 𝑍 is a sample drawn from a field centered on
𝑒 with radius 𝑟 = 1/𝛿 × dist(𝑥, 𝑒) where 𝑒 is 𝑥’s closest enemy.
We could therefore learn 𝑔 from the instances used for the linear
separability test, because these are exactly what LS needs for training.
We highlight, however, that nothing prevents our linear surrogate
from attaining a good adherence in larger scopes. In concordance
with our maximality requirement (Section 2), LSAPE carries out a
posteriori expansion of the training field before reporting the linear
explanation to the user. While the adherence does not decrease, that
is while 𝑚(𝑔) ≥ 𝜏 , LSAPE extends the field radius and trains a new
linear explanation (line 5-10 in Algorithm 5). The threshold 𝜏 is
set to the adherence of 𝑔 in the initial field. The radius is increased
using the same expansion strategy of Growing Fields (lines 8-9 in
Algorithm 3).

3.4 Rule-based Explanations
If the decision frontier in the vicinity of our target instance is too
complex to be approximated with a single linear surrogate, users
may apply clustering techniques on the neighborhood 𝑍 and provide
different linear explanations for each of the instance clusters at the
decision boundary. This would provide a complete picture of the
black box behavior around the target. However, such an explanation

Algorithm 5 EXTENDED LOCAL SURROGATE (LSAPE )
Require: instances 𝑍 ⊂ 𝑋 drawn from a field, a classifier 𝑓 : 𝑋 → 𝑌 ,

target and counterfactual instance𝑥, 𝑒 ∈ 𝑋 , an adherence metric 𝑚;
Hyper-parameters: 𝜃 = 0.05

Ensure: a linear surrogate classifier 𝑔
1: 𝑟 ← 1/𝛿 × dist (𝑥, 𝑒)
2: Split 𝑍 into 𝑍train, 𝑍test
3: 𝑔← LINEAR REGRESSION (𝑍train, 𝑓 (𝑍train))
4: 𝑎 ← 𝜏 ←𝑚 (𝑔) on 𝑍test
5: while 𝑎 ≥ 𝜏 ∧ 𝑟 < 1 do
6: 𝑟 ← 𝜃 × 𝑟
7: 𝑍 ∼ F(𝑇, 𝑟, 𝑒)𝑖≤𝑛
8: Split 𝑍 into 𝑍train, 𝑍test
9: 𝑔← LINEAR REGRESSION (𝑍train, 𝑓 (𝑍train))

10: 𝑎 ←𝑚 (𝑔) on 𝑍test
11: end while
12: return 𝑔

is potentially difficult to grasp for users, because it might consist
of potentially contradicting feature-attribution rankings. On those
grounds, APE proposes by default a rule-based explanation when
linear surrogates are considered unsuitable. Alternatives are anchors
or shallow decision trees. Anchors [18] learns a single explanation
rule of the form 𝑝 ⇒ 𝑓 (𝑥) such that 𝑝 is a conjunction of conditions
of maximal coverage and the rule has a precision of at least 𝜏 . The
decision tree is learned on the set 𝑍 containing both friends 𝐹 and
enemies 𝐸 of 𝑥 in the field centered on 𝑒, the closest enemy of 𝑥 .
We remark, nevertheless, that our framework could be coupled with
other explanation approaches [3, 9, 15]. This is an interesting avenue
for future research.

Finally, APE complements the rule-based explanation with a set
of counterfactual instances. These are the centroids of the clusters
defined by an extended set of enemies 𝐸∗ ⊇ 𝐸 (generated using the
F generation process from Algorithm 2). This set can be obtained
by increasing the field ratio 𝑟 while the precision of the explanation
is above 𝜏 . The clusters are computed using K-means [11] and the
number of clusters 𝑘 is determined using the Elbow method [22].

4 EXPERIMENTS
We conduct four rounds of experiments to evaluate APE:

• The first round of experiments (Section 4.1) assesses APE’s ora-
cle, specifically its ability to distinguish the cases where a linear
explanation can yield a single accurate approximation for a given
black-box classifier and target instance.
• In the second round, we compare APE’s explanations to those of

LIME [17] and LS [14] in terms of adherence (Section 4.3).
• In a third round (Section 4.4), we conduct an ablation study of the

two components of the APE oracle through an evaluation of their
impact on the adherence of APE.
• The last round in Section 4.5 compares the quality of APE’s

counterfactual explanations – computed with Growing Fields –
with those output by Growing Spheres [13].

The source code of APE as well as the experimental datasets and
additional results are available on Github3.

3https://github.com/j2launay/APE

https://github.com/j2launay/APE
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4.1 Experimental Setup
Datasets. Table 2 describes our experimental datasets. The list com-
prises 6 real and 6 synthetic datasets, the latter generated with scikit-
learn4. Five of those synthetic datasets contain only numerical fea-
tures. The real datasets were chosen to provide a mix of numerical
and categorical features. All datasets define two target classes. We
highlight though, that a multi-class classification problem can always
be formulated in terms of a set of binary classification problems –
one per class.

Name
Features

Instances
Numerical Categorical

Adult 2 10 48842
Blob † 2 0 1000
Blobs † 12 0 5000
Blood 4 0 748
Cat Blobs † 4 4 5000
Cancer 10 20 569
Circles † 2 0 1000
Diabetes 8 0 768
M Blobs † 20 0 7500
Moons † 2 0 1000
Mortality 15 52 1614
Titanic 1 5 1046

Table 2: Experimental datasets († indicates synthetic datasets)

Black-box Classifiers. We evaluate APE on a handful of classi-
fiers of different architectures – i.e., ensemble methods, piecewise-
constant functions, smooth functions – implemented in scikit-learn
with default values of hyperparameters unless stated otherwise: (i)
Gradient Boosting (GB) with 20 tree estimators, (ii) Multi-layer
Perceptron (MLP) with a logistic activation function, (iii) Random
Forest (RF) with 20 tree estimators, (iv) Gaussian Naive Bayes (NB),
(v) Support Vector Machine (SVM) with a balanced class weight,
(vi) Decision Tree (DT), (vii) Logistic Regression (LR) and (viii) a
Voting ensemble (VC) composed of LR, SVM, and NB classifiers.
In addition to the class of an instance, the classifiers can provide
class probabilities. The classifiers were trained on 70% of the data
points and their accuracy tested on the remaining 30%. They exhibit
accuracy scores between 0.65 and 0.99.
Explanation modules. APE and the competitors were tested on a
random sample of 100 target instances drawn from the test instances
of the experimental datasets. All the explanation modules had ac-
cess to the training set used to learn the classifiers (argument 𝑇 in
Algorithm 1). We tested APE with Anchors and shallow decision
trees (maximal depth of 3) as explanation solutions when linear
explanations are considered unsuitable. We denote these variants by
APE𝑎 and APE𝑡 . Anchors requires a precision goal 𝜏 for rules, that
we set to 0.95. Nevertheless, the semantics of 𝜏 are purely indicative,
because the algorithm will always report an explanation even if this
goal is not attainable in the surrogate’s training set. In line with
LIME and LS, the training instances for learning the linear surrogate
are labeled with the class probabilities of the target class 𝑓 (𝑥) output
by the black-box classifiers.

4http://scikit-learn.org

Metrics. We measure the adherence of our explanations via the ac-
curacy score of the surrogate models on the region (e.g., field) where
they were trained. We use 60% of the generated artificial instances
(lines 5 and 7 in Algorithm 1) for training the surrogates and keep
40% for evaluating their accuracy. When we know the features actu-
ally used by the input classifier, we measure the explanation fidelity
through the precision and the Kendall rank correlation coefficient
on the sets of features reported by the explanations. The precision
score gives the proportion of features in the explanation that are
indeed used by the black-box classifier. The Kendall coefficient
quantifies the agreement between the feature attribution rankings of
the explanation and the actual contribution ranking in the black-box.

We evaluate the APE oracle by comparing the adherence and
fidelity of the linear surrogates learned with LSAPE across the two
outcomes of the oracle.

4.2 APE Oracle Evaluation
Adherence Evaluation. Table 3 presents the mean adherence (accu-
racy) of the linear surrogates computed for each black-box classifier
across 100 test instances on our experimental datasets. The surro-
gates were computed using LSAPE . For each target instance, the APE
oracle determines whether or not the decision boundary admits a sin-
gle accurate linear approximation (Yes or No). The results show the
pertinence of APE’s linear suitability test. When the oracle predicts
a linearly separable decision boundary, the surrogate’s accuracy is
on average 0.124 points higher than in the opposite case. Moreover,
we observe that the proportion of linearly separable cases is mostly
explained by the dataset. That said, the architecture of the black-box
classifier can also have an impact on this proportion as suggested by
the Adult dataset where 25% of the target instances of the Voting
Ensemble (VC) are deemed unsuitable for a linear explanation, in
contrast to the other datasets for which this proportion is higher.
This happens in contrast to the Gradient Boosting (GB) classifiers
where 65% of the target instances do not admit a linear explanation
according to the oracle. We remark, however, that even when the
oracle rejects linear suitability, the adherence of the linear surrogate
can still be high, e.g., Cat Blobs dataset with GB black box. This can
be explained by the fact that multimodal, e.g., clustered data, can
still exhibit some level of linear separability if the individual clusters
contain mostly instances of the same class. In such cases APE favors
a rule-based explanation with multiple counterfactual instances in
order to highlight the complexity of the decision boundary and illus-
trate the different ways to change the classifier’s outcome. That is
why APE tests first for unimodality and then for linear separability.

The interest of the APE oracle can be illustrated through this
example drawn from the moons dataset – which contains 2 features.
The Libfolding unimodality test on the set of closest enemies 𝐸

around the target instance 𝑥 = [1.37,−0.65] detects a multimodal
distribution, and the k-elbow method reports three enemy clusters
whose centers are 𝑧1 = [1.23, 0.25], 𝑧2 = [0.90,−0.07], and 𝑧3 =

[0.76, 0.26]. Applying LSAPE on those counterfactual instances as
centers of the generative process reveals contradictory explanations,
since the attribution of the first feature for 𝑧1 is 0.079 whereas it is
−0.003 for 𝑧3.
Fidelity Evaluation. To compare the fidelity of the linear surrogates
across the two possible outcomes of the oracle, we resort to a set

http://scikit-learn.org


When Should We Use Linear Explanations? CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Is a Linear Explanation Suitable?

GB MLP RF VC SVM

Yes No 𝑃𝑟𝑜𝑝𝑛𝑜 Yes No 𝑃𝑟𝑜𝑝𝑛𝑜 Yes No 𝑃𝑟𝑜𝑝𝑛𝑜 Yes No 𝑃𝑟𝑜𝑝𝑛𝑜 Yes No 𝑃𝑟𝑜𝑝𝑛𝑜

Adult 0.555 0.486 0.65 0.507 0.397 0.60 0.659 0.483 0.47 0.334 0.304 0.25 0.679 0.643 0.35
Blob 0.891 0.782 0.57 0.890 0.760 0.49 0.874 0.730 0.56 0.899 0.748 0.46 0.894 0.744 0.43
Blobs 0.855 0.636 0.78 0.723 0.606 0.86 0.783 0.655 0.82 0.745 0.610 0.68 0.717 0.599 0.80
Blood \ 0.437 0.99 \ 0.497 1.00 \ 0.283 1.00 \ 0.223 1.00 \ 0.622 1.00
Cancer 0.502 0.381 0.20 0.501 0.499 0.12 0.510 \ 0.00 0.411 0.382 0.21 0.499 \ 0.02
Cat Blobs 0.910 0.898 0.70 0.958 0.900 0.86 0.874 0.958 0.50 0.967 0.936 0.72 0.883 0.794 0.48
Circles 0.945 0.723 0.09 0.958 \ 0.00 0.950 0.708 0.04 0.948 \ 0.00 0.949 \ 0.00
Diabetes 0.630 0.399 0.92 0.802 0.585 0.96 \ 0.453 0.98 0.673 0.258 0.96 0.717 0.518 0.88
M Blobs \ 0.833 0.97 \ 0.967 1.00 0.863 0.845 0.82 \ 0.947 0.99 0.944 0.942 0.71
Moons 0.923 0.708 0.55 0.917 0.802 0.59 0.918 0.727 0.42 0.916 0.881 0.85 0.920 0.750 0.50
Mortality \ 0.826 1.00 \ 1.000 1.00 \ 0.839 1.00 \ 0.518 1.00 \ 0.420 1.00
Titanic 0.761 0.667 0.06 0.919 \ 0.00 0.973 1.000 0.04 0.999 0.997 0.16 0.715 \ 0.00

Table 3: Average accuracy computed on 100 instances per black-box model and dataset of LSAPE for both the oracle’s outcomes.
Columns “Yes” and “No” are the average accuracy of LSAPE when the oracle indicates that a linear explanation is suitable or unsuitable.
\ denotes a non-meaningful accuracy score, i.e., there were less than 3 instances in that case. Columns Prop𝑛𝑜 denote the ratio of cases
when the oracle does not predict linear suitability. The colors blue, orange, and red indicate Prop𝑛𝑜 ≤ 33%, 33% > Prop𝑛𝑜 ≥ 66%, and
Prop𝑛𝑜 ≥ 66% respectively. Each row reports the results for a particular dataset, such as Adult in the first row.

of “glass” black-box classifiers, i.e., white-box classifiers treated
as black boxes. The classifiers are trained on half of the dataset
features, which we chose randomly. We restrict our evaluation to
datasets with at least 8 features. We apply LSAPE and use as expla-
nation the ranking given by the top half features (by the absolute
value of the attribution coefficient) of the linear surrogates. Figure 3
depicts the Kendall rank correlation coefficient for gradient boosting
(GB), decision tree (DT), random forest (RF), and logistic regression
(LR) classifiers. For LR, the ground truth is given by the feature
coefficients of the logistic function. Similarly, we can extract the
ground truth for DT by collecting the features encountered along the
classification path of the instances. For the GB and RF classifiers, we
construct feature rankings by means of the Gini importance score [2]
provided by scikit-learn.

We observe that whenever the APE oracle predicts linear suitabil-
ity, the rank correlation is on average very close to 1. This means that
LSAPE fully recovers the actual importance ranking of the features
within the complex model. When the oracle discourages linear expla-
nations, LSAPE has indeed difficulties at finding the actual features
used by the “glass” black-box classifier. These results confirm that
the APE’s linear suitability test is a good indicator of the expected
quality of a linear surrogate, which translates into faithful explana-
tions for black-box classifiers. Similar results are obtained when
using the precision as fidelity metric.

4.3 Competitors Evaluation
We report the average accuracy on 100 target instances for linear
surrogates learned with LIME, LS, and the APE’s variants APE𝑎

and APE𝑡 . We exclude SHAP [15] from this evaluation because,
even though the Kernel SHAP variant resorts to linear regression,
it approximates the shapley values unlike linear surrogate such as
LIME and LS that compute the gradient of the underlying model [7].
APE’s variants return respectively an anchor or a shallow decision

Figure 3: Average Kendall’s rank correlation coefficient of the
LSAPE’s explanations computed on 100 instances for 7 datasets
and 4 “glass” black-box models across the oracle’s outcomes.

tree when the APE oracle does not predict linear suitability, other-
wise they both invoke LSAPE . The results are shown in Figure 4. For
LS, we omit the datasets with categorical attributes since these are
not supported by this method.

The results show that regardless of the rule-based surrogate, APE
achieves the best accuracy, and that the performance of its two
variants depends on the black-box model. On average APE𝑎 offers
higher adherence, but also exhibits higher variability. All in all, this
evaluation shows that judiciously choosing between linear and rule-
based explanations in a per-instance basis brings a fidelity gain of
0.21 points on average when compared to always choosing LIME
or LS. We also remark that when APE chooses to report a linear
explanation, the decision frontier is indeed linearly separable: this
is confirmed by the fact that both APE𝑎 and APE𝑡 outperform LS
and LIME by a large margin even for black boxes with a relatively
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Figure 4: Average accuracy per black-box model on 100 in-
stances of the experimental datasets for APE𝑎 and APE𝑡 .

high proportion of linearly suitable frontiers, e.g., SVM and RF (see
Table 3).

4.4 Ablation Study

We now carry an ablation study to assess the contribution of
the APE oracle’s components, namely the Libfolding unimodality
test [20] and the Thornton’s linear separability test [23], on the adher-
ence of APE. We report the average accuracy of APE𝑎 and APE𝑡 in
Figures 5a and 5b, compared to the same variant of APE excluding
the libfolding unimodality test (APE \{Libfolding}) and the Thorn-
ton’s separability test (APE \{Thornton}). The results suggest that
the unimodality and separability tests are complementary, and that
simply testing for linear separability around the decision boundary is
not enough to predict linear suitability as suggested by the accuracy
of APE \{Libfolding}.

4.5 Counterfactuals Evaluation
In line with the literature in counterfactual explanations [25], we
assess the quality of APE’s reported counterfactual instances for our
100 test instances, by measuring their resemblance to real instances.
To this end we resort to the Mahalanobis distance computed against
the entire set of enemies in the test instances. The Mahalanobis
distance measures to which extent our counterfactual explanations
are outliers w.r.t. the distribution of non-synthetic enemies. We report
the quality of the counterfactual instances when computed using
Growing Fields and Growing Spheres [13]. The distance values
show that overall, APE finds more realistic counterfactual instances
than GS, i.e., the instances lie in average 0.356 points closer to
actual instances. This originates from the fact that, unlike GS, APE
– more precisely Growing Fields – takes into account the variance
and amplitude of the attributes when generating synthetic instances.
This also incurs a speed-up of two orders of magnitude because
taking into account the data distribution guarantees a data-aware
expansion speed for the field radius during the quest for enemies
(runtime results are provided on Github.)

5 STATE OF THE ART
The fundamental question of what makes an explanation suitable
for a particular use case lies at the junction of XAI and cognitive
sciences. For this reason, this research question has not been ad-
dressed from a holistic perspective but rather from different, still
complementary, angles.

On the one hand, the XAI community has put emphasis on the
development of post-hoc explanation paradigms and methods [10],
e.g., attribution scores, linear surrogates, rule-based surrogates, coun-
terfactual explanations, sensitivity coefficients, etc. All these ap-
proaches aim to identify the features that play a role in the predictions
of an AI model. Among those, feature attribution rankings based on
linear surrogates such as LIME [17] or LS [14] enjoy notable popu-
larity, because they can provide accurate per-instance explanations.
Besides, practitioners from most disciplines are familiar with linear
models. While SHAP [15] – more precisely its variant Kernel SHAP
– may resort to linear regression to compute attribution scores, the
obtained coefficients are not a linear approximation of the black
box, but actually approximations of the Shapley values of the input
features. These values are based on coalitional game theory and mea-
sure the average change in the model’s expected prediction when
conditioning on each feature. Shapley values are therefore akin to
discrete gradients as computed by methods such as DeepLift [19] or
Integrated Gradients [21]. All these explanations models are learned
so that they optimize for user-agnostic criteria such as the adherence,
which is usually an accurate proxy for fidelity [8]. Adherence is
generally quantified by means of classical ML scores that depend
on the black box’s main task, e.g., classification, regression, etc.
Other desiderata for explanations include low complexity [6] and
stability [5, 26], however the bulk of the literature in classical XAI
has pushed the state of the art towards novel approaches – or im-
provements of existing ones – that primarily optimize for fidelity in
the general case. None of these works tackles the question of when
a linear surrogate is objectively a reliable explanation. This is the
primary driver of our work that focuses on adherence and fidelity
for surrogate classifiers in a per-case basis.

At the other side of the spectrum, cognitive and social sciences
study the subjective and human aspects of explaining AI models.
In that spirit, the suitability of an explanation is characterized by
its comprehensibility and plausibility [6]. Comprehensibility cap-
tures the extent to which a user grasps an explanation and can use
it to accomplish well-defined tasks [1], e.g., determine the features
used by the black-box system, predict the black box’s answer, etc.
That “understanding” is operationalized via objective measures on
execution time or accuracy w.r.t. those tasks. On the other hand,
the plausibility dimension models the cognitive preferences and
background of the users. As pointed out by several studies [6, 12],
users can reject an explanation if it contradicts common sense, for
instance, if the explanation is too simplistic given that the underly-
ing problem is deemed complex. The consensus seems to indicate
that showing plausible and sound explanations increases trust in AI
systems [12, 24], whereas the effects on comprehensibility and task
efficiency are mixed.

While the XAI and cognitive science communities may appear
somehow unreconciled, the relevance of the quality dimensions tar-
geted by classical XAI methods has been justified by user studies. It
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(a) Average accuracy of APE𝑎 (b) Average accuracy of APE𝑡

Figure 5: Average accuracy per black box computed on 100 instances of the experimental datasets for APE𝑎 in (a) and for APE𝑡 in (b)
when we remove the libfolding unimodality and linear separibility tests from the APE oracle.

Figure 6: Average Mahalanobis distance between the counterfac-
tual instances generated by Growing Spheres (GS) and Growing
Fields (GF).

has been suggested [12] that in the context of recommender systems,
low adherence harms trust in explanations. Evidence also suggests
that multi-paradigm explanations can have a positive impact on com-
prehensibility [16, 27]. In particular, counterfactual explanations can
be a complement to attribution-based or rule-based explanations.
In this line of thought, our approach APE (a) informs the user of
whether a use case is explainable with a faithful and unambiguous
linear approximation, and (b) enriches the resulting explanation with
counterfactual instances. When the decision boundary is unadapted
to a linear surrogate, APE offers the possibility of computing a
rule-based explanation.

6 DISCUSSION AND CONCLUSION
We have presented a method to decide a priori the pertinence of a
local linear explanation for a given use case. Our decision is driven
by standard user-agnostic desirata, namely the adherence and fidelity
of the explanations. The experimental results suggest that it is possi-
ble to characterize the decision boundary of a black-box classifier

around a target instance and select between linear and rule-based
explanations. In that spirit, the answers of APE can provide valu-
able insights to the users of AI systems and linear surrogates. If
APE discourages a linear explanation, then we can conclude that the
classification boundary is probably complex and that a unique expla-
nation based on feature attribution will be incomplete or inaccurate.
Moreover, our use of counterfactual explanations provides users
with a diverse and representative set of scenarios that can change
the classifier’s output. That being said, we emphasize that the most
adapted explanation for a use case must take into account the human
and cognitive aspects of explaining complex AI systems to end users.
We focused on local linear explanations, because practitioners often
resort to these models without questioning their pertinence.

Existing studies [16] suggest that multifaceted explanations, e.g.,
an anchor plus a counterfactual, can be more effective than single-
paradigm explanations at illustrating the logic behind a classifier.
Since this argument does not exclude the combination of attribution-
based and rule-based explanations, this work does not discourage
such a conjunction of paradigms. Instead it provides hints about the
nature of the classifier’s decision border. This could be useful in
scenarios where the goal is to replace the black-box model, e.g., for
reverse engineering or when a single and complete unambiguous
explanation is required.

As future work we envision to port APE to other data types, e.g.,
text, and ML tasks, e.g., regression. Moreover, we would like to
adapt our framework to other explanation paradigms such as rules,
Shapley values, and different sorts of discrete gradients. This could
be formulated in two ways: (i) by replacing rule-based surrogates
with a different paradigm in APE, or (ii) by defining new oracles
that can tell us when a particular explanation type is adapted to a
classifier and target instance. Another interesting research avenue is
the integration of the notions of coverage, complexity, and plausibil-
ity when deciding for the best explanations for a given use case.
Acknowledgments. This research was funded by the Agence Na-
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