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Abstract Recent advances in information extraction
have led to huge knowledge bases (KBs), which cap-
ture knowledge in a machine-readable format. Inductive
Logic Programming (ILP) can be used to mine logical
rules from these KBs, such as “If two persons are mar-
ried, then they (usually) live in the same city”. While
ILP is a mature field, mining logical rules from KBs is
difficult, because KBs make an open world assumption.
This means that absent information cannot be taken as
counterexamples. Our approach AMIE [16] has shown
how rules can be mined effectively from KBs even in
the absence of counterexamples. In this paper, we show
how this approach can be optimized to mine even larger
KBs with more than 12M statements. Extensive exper-
iments show how our new approach, AMIE+, extends
to areas of mining that were previously beyond reach.
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1 Introduction

Recent advances in information extraction have led to
the creation of large knowledge bases (KBs). These
KBs contain facts such as “London is the capital of
the United Kingdom”, “Elvis was born in Tupelo”, or
“Every singer is a person”. Some of the most prominent
projects in this direction are NELL [6], YAGO [39], DB-
pedia [5], and Freebase [41]. These KBs provide infor-
mation about a great variety of entities, such as people,
countries, rivers, cities, universities, movies, animals,
etc. The KBs know, e.g., who was born where, which
actor acted in which movie, or which city is located in
which country. Today’s KBs contain millions of entities
and hundreds of millions of facts.

These KBs have been constructed by mining the
Web for information. In recent years, however, the KBs
have become so large that they can themselves be mined
for information. It is possible to find rules in the KBs
that describe common correlations in the data. For ex-
ample, we can mine the rule

livesIn(h,p) A marriedTo(h,w) = livesIn(w,p)

This rule captures the fact that, very often, the spouse
of a person lives in the same place as the person. Find-
ing such rules can serve four purposes: First, by ap-
plying such rules on the data, new facts can be de-
rived that make the KB more complete. For example,
if we know where Barack Obama lives, and if we know
that Michelle Obama is his wife, then we can deduce
(with high probability) where Michelle Obama lives.
Second, such rules can identify potential errors in the
knowledge base. If, for instance, the KB contains the
statement that Michelle Obama lives in a completely
different place, then maybe this statement is wrong.
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Third, the rules can be used for reasoning. Many rea-
soning approaches rely on other parties to provide rules
(e.g., [32,36]). Last, rules describing general regulari-
ties can help us understand the data better. We can,
e.g., find out that countries often trade with countries
speaking the same language, that marriage is a sym-
metric relationship, that musicians who influence each
other often play the same instrument, and so on.

The goal of this paper is to mine such rules from
KBs. We focus on RDF-style KBs in the spirit of the
Semantic Web, such as YAGO [39], Wikidata®, and DB-
pedia [5]. These KBs provide binary relationships in
the form of RDF triples [43]. Since RDF has only pos-
itive inference rules, these KBs contain only positive
statements and no negations. Furthermore, they oper-
ate under the Open World Assumption (OWA). Under
the OWA, a statement that is not contained in the KB
is not necessarily false; it is just unknown. This is a cru-
cial difference to many standard database settings that
operate under the Closed World Assumption (CWA).
Consider an example KB that does not contain the in-
formation that a particular person is married. Under
the CWA we can conclude that the person is not mar-
ried. Under the OWA, however, the person could be
either married or single.

Mining rules from a data set is the central task of
Inductive Logic Programming (ILP). ILP approaches
induce logical rules from ground facts. Yet, classical ILP
systems cannot be applied to semantic KBs for two rea-
sons: First, they usually require negative statements as
counterexamples. Semantic KBs, however, usually do
not contain negative statements. The semantics of RDF
Schema are too weak to deduce negative evidence from
the facts in a KB2. Because of the OWA, absent state-
ments cannot serve as counter-evidence either. Second,
today’s ILP systems are slow and cannot handle the
huge amount of data that KBs provide. In our exper-
iments, we ran state-of-the-art approaches on YAGO2
for a couple of days without obtaining any results.

With the AMIE project [16], we have shown how to
mine logical rules from KBs despite the absence of ex-
plicit counter-examples. The key technique was the Par-
tial Completeness Assumption (PCA). It allowed AMIE
to “guess” counterexamples for rules, and thus estimate
their quality even under the OWA. We have shown that
our approach outperformed other rule mining systems
both in terms of the quality and the quantity of the
mined rules. AMIE could already run on KBs with up
to one million statements — a size that was beyond the
reach of any previous ILP-based rule mining system.

! http://www.wikidata.org
2 RDF Schema has only positive rules and no disjointness
constraints or similar concepts.

AMIE achieved this without any need for parameter

tuning or expert input.

With the present paper, we develop AMIE even fur-
ther. We present pruning strategies and approximations
that allow the system to explore the search space much
more efficiently. This allows us to find Horn rules on
KBs with several millions of statements in a matter of
hours or minutes. Such large KBs were previously out
of reach even for AMIE. We also show how the preci-
sion of the predictions can be increased to up to 70% by
using type information and joint reasoning. In addition,
we provide a thorough investigation of the metrics we
use, thus giving a more complete picture of rule mining
on large-scale knowledge bases.

More precisely, our contributions are as follows:

e A comprehensive investigation and description of the
AMIE approach, including a description of our in-
memory database and an evaluation of AMIE’s fun-
damental assumption, the PCA.

e A suite of optimization steps that allow a much more
efficient exploration of the search space.

e Extensive experiments that show the competitive-
ness of our approach, including techniques to increase
the precision of our predictions to 70%.

The rest of this paper is structured as follows: Section 2
discusses related work and Section 3 introduces pre-
liminaries. In Section 4, we introduce the Partial Com-
pleteness Assumption (PCA) and, based on it, the PCA
confidence measure. Section 5 recaptures the AMIE ap-
proach from [16], extending it by a description of our
in-memory database. Section 6 is the main part of the
paper: It presents the pruning strategies that optimize
the performance of AMIE. Section 7 presents our ex-
periments before Section 8 concludes.

2 Related Work

Technically speaking, we aim to mine Horn rules on bi-
nary predicates. Rule mining has been an area of active
research during the past years. Some approaches mine
association rules, some mine logical rules, others mine
a schema for the KB, and again others use rule mining
for application purposes. In the following, we survey the
most pertinent related work along these lines.

2.1 Association Rule Mining

Association rules [3] are mined on a list of transactions.
A transaction is a set of items. For example, in the con-
text of sales analysis, a transaction is the set of prod-
ucts bought together by a customer in a specific event.
The mined rules are of the form {ElvisCD, FElvisBook}
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= ElvisCostume, meaning that people who bought an
Elvis CD and an Elvis book usually also bought an
Elvis costume. However, these are not the kind of rules
that we aim to mine in this paper; we aim at min-
ing Horn rules. We show in [16] that Horn rule mining
corresponds to association rule mining on a database
that is exponentially large in the maximal number of
variables of the rules. One problem for association rule
mining is that for some applications the standard mea-
surements for support and confidence do not produce
good results. [40] discusses a number of alternatives to
measure the interestingness of a rule in general. Our
approach is inspired by this work and also makes use of
a language bias [2] to reduce the search space.

2.2 Logical Rule Mining

Sherlock [37] is an unsupervised ILP method to learn
first-order Horn clauses from open domain facts. Sher-
lock uses probabilistic graphical models (PGMs) to in-
fer new facts. It tackles the noise of the extracted facts
by extensive filtering in a preprocessing step and by pe-
nalizing longer rules in the inference part. For mining
the rules, Sherlock uses two heuristics: statistical signif-
icance and statistical relevance. Unlike AMIE, it works
on facts extracted from free text that are not mapped
to crisp relations. QuickFOIL [44] is a standard ILP
system based on a generic top-down greedy algorithm
and implemented on top of the QuickStep in-memory
storage engine [7]. It learns a set of hypotheses (Horn
rules) from positive and negative examples of a target
relation and a collection of background facts. When re-
fining a rule, the QuickFOIL algorithm greedily picks
the clause that maximizes a scoring function depend-
ing on the support and the confidence gain of the new
rule. Once a rule is mined, the algorithm removes the
positive examples covered by the rule and starts the in-
duction process on the remaining facts. QuickFOIL can
scale to problem instances with millions of background
facts thanks to a set of aggressive pruning heuristics
and multiple database optimizations. However, it is not
suitable for mining rules under the Open World As-
sumption, since it requires explicit negative examples.
The WARMR system [13,14] mines patterns in data-
bases that correspond to conjunctive queries. It uses a
declarative language bias to reduce the search space.
An extension of the system, WARMER [17], modified
the approach to support a broader range of conjunc-
tive queries and increase efficiency of search space ex-
ploration. ALEPH? is a general purpose ILP system

3 http://www.cs.ox.ac.uk/activities/machlearn/
Aleph/aleph_toc.html

that implements Muggleton’s Inverse Entailment algo-
rithm [30] in Prolog. It employs a variety of evaluation
functions for the rules as well as a variety of search
strategies. These approaches are not tailored to deal
with large KBs under the Open World Assumption. We
compare our system to WARMR and ALEPH, which
are the only ones available for download. Our experi-
ments do not only show that these systems mine less
sensible rules than our approach, but also that they
take more time to do so.

2.3 Expert Rule Mining

Another rule mining approach over RDF data [33] was
proposed to discover causal relations in RDF-based
medical data. It requires a domain expert who defines
targets and contexts of the mining process, so that the
correct transactions are generated. Our approach, in
contrast, does not rely on the user to define any con-
text or target. It works out-of-the-box.

2.4 Generating Schemas

In this paper, we aim to generate Horn rules on a
KB. Other approaches use rule mining to generate the
schema or taxonomy of a KB. [9] applies clustering
techniques based on context vectors and formal concept
analysis to construct taxonomies. Other approaches use
clustering [26] and ILP-based approaches [11]. For the
friend-of-a-friend network on the Semantic Web, [19]
applies clustering to identify classes of people and ILP
to learn descriptions of these groups. Another example
of an ILP-based approach is the DL-Learner [24], which
has successfully been applied [20] to generate OWL
class expressions from YAGO [39]. As an alternative to
ILP techniques, [42] proposes a statistical method that
does not require negative examples. In contrast to our
approach, these techniques aim at generating a schema
for a given RDF repository, not logical rules in general.

2.5 Relational Machine Learning

Some approaches learn new associations from seman-
tic data without mining explicit logical rules. For ex-
ample, relational machine learning methods propose a
holistic statistical approach that considers both the at-
tribute information and the relationships between en-
tities to learn new links and concepts. [34] applies ten-
sor factorization methods to predict new triples on the
YAGO?2 ontology by representing the KB as a three-
dimensional tensor. In a similar fashion, [21] uses mul-
tivariate prediction techniques to learn new links on a
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social graph. In both approaches, however, the predic-
tions are opaque. It is possible to generate predictions,
but not to derive general structural knowledge about
the data that can explain the reasons why the predic-
tions were made. For example, these approaches will
tell us that Michelle Obama most likely lives in Wash-
ington, but they will not tell us that this is because her
husband lives in Washington and people tend to live in
same place as their spouses. Our approach, in contrast,
aims at mining explicit logical rules that capture the
correlations in the data. These can then be used to de-
rive new facts and also to explain why these facts were
derived.

2.6 Learning Rules From Hybrid Sources

[10] proposes to learn association rules from hybrid
sources (RDBMS and Ontologies) under the OWA. For
this purpose, the definition of frequency (and thus of
support and confidence) is changed so that unknown
statements contribute with half of the weight of the true
statements. Another approach [25] makes use of an on-
tology and a constraint Datalog program. The goal is to
learn association rules at different levels of granularity
w.r.t. the type hierarchy of the ontology. While these
approaches focus more on the benefits of combining hy-
brid sources, our approach focuses on pure RDF KBs.

2.7 Further Applications of Rule Mining

[22] proposes an algorithm for frequent pattern min-
ing in KBs that uses DL-safe rules. Such KBs can be
transformed into a disjunctive Datalog program, which
allows seeing patterns as queries. This approach does
not mine the Horn rules that we aim at. Some ap-
proaches use rule mining for ontology merging and
alignment [12,29,35]. The AROMA system [12], for in-
stance, uses association rules on extracted terms to find
subsumption relations between classes and properties of
different ontologies. Again, these systems do not mine
the kind of rules we are interested in. In [1] association
rules and frequency analysis are used to identify and
classify common misusage patterns for relations in DB-
pedia. In the same fashion, [45] applies association rules
to find synonym predicates in DBpedia. The matched
synonyms are then used for predicate expansion in the
spirit of data integration. This is a vital task in manu-
ally populated KBs where the users may not use canon-
ical names for relations, or for cases when the data is
produced by independent providers. In contrast to our
work, these approaches do not mine logical rules, but

association rules on the co-occurrence of values. Since
RDF data can be seen as a graph, mining frequent sub-
trees [8,23] is another related field of research. However,
as the URISs of resources in knowledge bases are unique,
these techniques are limited to mining frequent combi-
nations of classes.

Several approaches, such as Markov Logic [36] or
URDF [32] use Horn rules to perform reasoning. These
approaches can be consumers of the rules we mine with
AMIE.

3 Preliminaries
3.1 RDF KBs

In this paper, we focus on RDF [43] knowledge bases.
We follow here the introduction of the preliminaries
from [16]. An RDF KB can be considered a set of facts,
where each fact is a triple of the form (z,r,y) with
x denoting the subject, r the relation (or predicate),
and y the object of the fact. There are several equiv-
alent alternative representations of facts; in this paper
we borrow the notation from Datalog and represent a
fact as r(z,y). For example, we write father(Elvis, Lisa).
The facts of an RDF KB can usually be divided into
an A-Box and a T-Box. While the A-Box contains in-
stance data, the T-Box is the subset of facts that define
classes, domains, ranges for predicates, and the class hi-
erarchy. Although T-Box information can also be used
by our mining approach, we are mainly concerned with
the A-Box, i.e., the set of facts relating one particular
entity to another.

In the following, we assume a given KB K as input.
Let R := Tyrelation(KC) denote the set of relations con-
tained in K and & 1= msupject (K0) U Topject (IC) the set of
entities.

3.2 Functions

A function is a relation r that has at most one object
for every subject, i.e.,

Vo {y:r(z,y)} <1

Similarly, a relation is an inverse function if each of
its objects has at most one subject. Since RDF KBs
are usually noisy, even relations that should be func-
tions (such as hasBirthdate) may exhibit two objects
for the same subject. Vice versa, there are relations that
are not functions in the strict sense, but that exhibit a
similar behavior. For example, hasNationality can give
several nationalities to a person, but the vast majority
of people only have one nationality. Therefore, we use
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the notion of functionality [38]. The functionality of a
relation 7 is a value between 0 and 1, which is 1 if r is
a function:

#x: Jy :r(x,y)

un(r) = ———————"1=2

fun(r) = B y) (o)
where #x : X is an abbreviation for |{z : X €

K}|. The inverse functionality is defined accordingly as
ifun(r) := fun(r=!), where r~! denotes the inverse re-
lation of r, that is, the relation defined by swapping the
arguments of r, e.g., actedIn™! = hasActor, therefore
ifun(actedIn) := fun(hasActor).

Some relations have roughly the same degree of
functionality and of inverse functionality. Bijections are
an example. Usually, however, fun and ifun are dif-
ferent. Manual inspection shows that in web-extracted
common sense KBs (e.g., YAGO, DBpedia) the func-
tionality is usually higher than the inverse functionality.
For example, a KB is more likely to specify isCitizenOf
than hasCitizen. Intuitively, this allows us to consider
a fact r(z,y) as a fact about z. In the following, we
will assume that for all relations r, fun(r) > ifun(r).
Whenever this is not the case, r can be replaced by its
inverse relation r=1. Then, fun(r=!) > ifun(r='). In
the following, we assume that all relations have been
substituted with their inverses if their inverse function-
ality is larger than their functionality. This will simplify
the analysis without affecting the generality of our ap-
proach.

3.3 Rules

An atom is a fact that can have variables at the subject
and/or object position. A (Horn) rule consists of a head
and a body, where the head is a single atom and the
body is a set of atoms. We denote a rule with head
r(z,y) and body {B, ..., B,} by an implication

Bl /\BQ A /\Bn = r(x,y)

which we abbreviate as B = r(z,y).

An instantiation of a rule is a copy of the rule,
where all variables have been substituted by constants.
A prediction of a rule is the head atom of an instan-
tiated rule if all body atoms of the instantiated rule
appear in the KB. For example, the above rule can
predict citizenOf(Lisa, USA) if the KB knows a par-
ent of Lisa, e.g., hasChild(Elvis,Lisa), who is American,
e.g.,citizenOf(Elvis,USA ).

AMIE, like other ILP systems, does not mine gen-
eral Horn Clauses, but uses a language bias (constraints
to the form of the mined rules) in order to restrict the
size of the search space. Language biases offer a trade-
off between the expressiveness of the mined rules and

the speed of the mining process. As an example, rules
with 3 atoms can capture more complicated correlations
than rules with 2 atoms, but come with a larger search
space and thus with a much slower performance. The
less restrictive the language bias is, the more expressive
the rules can potentially be, the larger the search space
grows, and the less tractable the search becomes.

AMIE’s language bias requires rules to be connected.
We say that two atoms in a rule are connected if they
share a variable or an entity. A rule is connected if ev-
ery atom is connected transitively to every other atom
of the rule. The restriction to connected rules avoids
mining rules with completely unrelated atoms, such as
diedIn(z,y) = wasBornIn(w, z).

AMIE also requires the rules to be closed. A vari-
able in a rule is closed if it appears at least twice
in the rule. A rule is closed if all its variables are
closed. The restriction to closed rules avoids mining
rules that predict merely the existence of a fact, as in
diedIn(x,y) = 3z : wasBornln(x, z).

AMIE omits also reflexive rules, i.e., rules with
atoms of the form r(x,z), as they are typically of
less interest in real world KBs. However, unlike some
other ILP systems, AMIE allows mining recursive rules.
These are rules that contain the head relation in the
body, as e.g., isMarriedTo(z,z) A hasChild(z,y) =
hasChild(z,y).

3.4 Measures of Significance

Normally, data mining systems define a notion of signifi-
cance or support for rules, which quantifies the amount
of evidence for the rule in the data. If a rule applies
only to a few instances, it is too risky to use it to draw
conclusions. For this reason, data mining systems fre-
quently report only rules above a given support thresh-
old. In the following, we define this metric for AMIE’s
setting and introduce another notion of significance, the
head coverage.

Support. In our context, the support of a rule quan-
tifies the number of correct predictions in the existing
data. One desired property for support is monotonicity,
that is, the addition of more atoms and constraints to
the rule should always decrease its support. As we will
show in Section 5.1, such property is crucial for prun-
ing. There are several ways to define the support: it can
be the number of instantiations of a rule that appear in
the KB. This measure, however, is not monotonic if we
add atoms to the body. Consider, for example, the rule

R: livesIn(x,y) = wasBornIn(z,y)

If we add the atom hasGender(x, male) to the body,
the number of instantiations x, y in the KB decreases.
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In contrast, if we add an atom with a fresh variable,
e.g., hasFriend(z,z), to the body, the number of in-
stantiations x, y, z increases for every friend of x. This
is true even if we add another atom with z to obtain a
closed rule. Alternatively, we can count the number of
facts in one particular body atom. Under this definition,
however, the same rule can have different support val-
ues depending on the selected body atom. We can also
count the number of facts of the head atom. This mea-
sure decreases monotonically if more body atoms are
added and avoids equivalent rules with different sup-
port values. With this in mind, we define the support
of a rule as the number of distinct pairs of subjects and
objects in the head of all instantiations that appear in
the KB:

supp(B = r(2,y)) 1= #(2,y) : 321, 2m : B Ar(a,y)

where z1, ..., z,, are the variables of the rule apart from
x and y. Table 1 shows an example KB that con-
tains only 2 relations and 5 facts. For this KB, our
example rule R has support 1, because of the facts
livesIn(Adam, Paris) and wasBornIn(Adam, Paris).

Note that the support is defined even for rules that
are not yet closed. This allows for early pruning of un-
promising candidate rules. For example, consider the
rule

R’: livesIn(z,y) = wasBornIn(y, z)

This rule is obviously unpromising, because it postu-
lates a birth place for y, which is not a person. The
rule is not yet closed (z and z appear only once). Yet,
it has support 0. Thus, it can be pruned away and does
not need further refinement.

Head Coverage. Support is an absolute number. This
means that a user defining thresholds on support has
to know the absolute size of the KB to give meaning-
ful values. Moreover, if the support threshold is higher
than the size of some relation, this relation will be dis-
regarded as head relation for rule mining. To avoid this,
we propose a proportional version of support. A naive
way would be to use the absolute number of support
(as defined in the previous paragraph) over the size of
the KB. This definition, however, does not solve the
problem for small relations. Therefore, we propose to
use the notion of head coverage:

supp(B = r(z.y))
size(r)

hc(§ = r(x,y)) =

with size(r) := #(2',y’) : r(2', y’) denoting the number
of facts in relation r. Head coverage quantifies the ratio
of the known true facts that are implied by the rule.
For the example presented in Table 1, he(R) = 1/2.

wasBornln
(Adam, Paris)
(Carl, Rome)

livesIn
(Adam, Paris)
(Adam, Rome)
(Bob, Zurich)

Table 1: An example KB containing two relations be-
tween people and cities.

4 Confidence Measures

The support of a rule quantifies the number of known
correct predictions of the rule. However, it does not
take into account the false predictions of the rule. Fol-
lowing [16], we will now describe measures that judge
the quality of a rule. We first describe the challenges in
defining such a measure in our setting and discuss the
most common way to measure the rule quality, which
we call the standard confidence. Then, we introduce our
own measure: the confidence under the assumption of
partial completeness.

4.1 Challenges

Let us consider a given Horn rule B = r(z,y). Let
us look at all facts with relation r (Figure 1). We
distinguish 4 types of facts: True facts that are known
to the KB (KBtrue), true facts that are unknown
to the KB (NEWtrue), facts that are known to be
false in the KB (KBfalse), and facts that are false but
unknown to the KB (NEWfalse). The rule will make
certain predictions about relation r (blue circle). These
predictions can be known to be true (A), known to
be false (C), or unknown (B and D). When they are
unknown to the KB, they can still be true (B) or false
(D) with respect to the real world.

Fig. 1: Prediction under Incompleteness

KBtrue NEWtrue
Lo true
KRPredlctlons
C D
\/ false
KBfalse NEWfalse
known to KB unknown to KB

Our goal is to find rules that make true predictions
that go beyond the current KB. In Figure 1, we wish to
maximize the area B and to minimize the area D. There
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are two obvious challenges in this context: First, the ar-
eas NEWtrue and NEWfalse are unknown. So if we wish
to maximize B at the expense of D, we are operating in
an area outside our KB. We would want to use the ar-
eas KBtrue and KBfalse to estimate the unknown area.
This, however, leads to the second challenge: Semantic
KBs do not contain negative evidence. Thus, the area
KBfalse is empty. This is the central challenge of our
setting: to provide counterexamples for the rule mining.
These can take the role of KBfalse so that we can esti-
mate the areas NEWtrue and NEWfalse. We describe
two approaches to this problem: Creating counterexam-
ples according to the Closed World Assumption (CWA)
that traditional association rule mining systems apply
and according to the Partial Completeness Assumption
(PCA) that we propose. We will now present these ap-
proaches in detail.

4.2 The CWA and Standard Confidence

The standard confidence measure takes all facts that
are not in the KB (i.e., NEWtrue and NEWfalse) as
negative evidence. Thus, the standard confidence of a
rule is the ratio of its predictions that are in the KB,
i.e., the share of A (KBtrue) in the set of predictions:

supp(§ = r(z,y))
#(x,y) 1 21, oy 2 ?

conf(? = r(x,y)) =

For example, consider again the rule
R : livesIn(z,y) = wasBornIn(z,y)

together with the KB given in Table 1. In this
case, conf(R) = 1/3, because (a) there is one posi-
tive example for the rule, wasBornIn(Adam, Paris),
and (b) the predictions wasBornIn(Adam, Rome) and
wasBorn(Bob, Zurich) are counted as negative exam-
ples since they do not appear in the KB.

Standard confidence is the measure traditionally
used in association rule mining and market basket anal-
ysis, where the Closed World Assumption (CWA) is
used: if there is no evidence in any of the transactions
of the database that a user bought a specific product,
then this user did not buy the product. Albeit natu-
ral for the market basket analysis scenario, standard
confidence fails to distinguish between “false” and “un-
known” facts, which makes it inappropriate for a sce-
nario with Open World semantics like ours. Moreover,
we also pursue a different goal than market basket anal-
ysis: we aim to maximize the number of true predictions
that go beyond the current knowledge, whereas market

confpca(§ = r(z,y)) =

basket analysis usually tries to mine rules that can de-
scribe data that is already known.

4.3 The PCA and the PCA-Confidence

In AMIE, we generate negative examples for a rule by
means of the Partial Completeness Assumption (PCA).
The PCA is the assumption that if r(z,y) € KBtrue for
some zx,y, then

Vy' :r(x,y’) € KBtrue U NEWtrue = r(z,y’) € KBtrue

In other words, we assume that if we know one y for a
given x and 7, then we know all ¢ for that = and r. This
assumption allow us to generate counter-examples in a
way that is less restrictive than the standard confidence.
In our example from Table 1, the PCA will assume that
any other place of birth for Adam and Carl is false.
Conversely, the PCA will not assume anything about
the places of birth of Bob, because the KB does not
know any. With this notion in mind, we redefine the
definition of confidence for rules. Under the PCA, the
denominator of the confidence formula is not the size
of the entire set of conclusions derived from the body
of the rule, but the number of facts that we know to be
true together with the facts that we assume to be false.

supp(B = r(x,y))
B Ar(ey)

(1)

#(xzy) : 3217"‘7zmay/ :

This formula normalizes the support by the number
of pairs (z,y) for which there exists a ¢y’ with r(z,).
Consider again the KB given in Table 1 and the rule
R : livesIn(z,y) = wasBornIn(z,y). In this case,
con fpea (R) = 1/2. This is because (a) there is one posi-
tive example for the rule, wasBornIn(Adam, Paris),
and (b) the prediction wasBornIn(Adam, Rome) is
counted as negative example, because we already know
a different place of birth for Adam. The prediction
wasBorn(Bob, Zurich) is completely disregarded as
evidence, because we neither know where Bob was born
nor where he was not born.

Notice that Eq. 1 fixes x and r and implies that
rules will try to predict values for y. AMIE always pre-
dicts in the most functional direction. To see this, recall
that it is more intuitive to predict the birthplace of a
specific person than predict all the people that were
born in a specific city. Since in Sec. 3.2 we re-write all
relations so that their functionality is larger than their
inverse functionality, the most functional direction will
be always to predict y given .
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In spite of being an assumption, the PCA is cer-
tainly true for functions, such as birthdate and capital.
The PCA also holds for relations that are not functions
but that have a high functionality, as we shall see in
our qualitative analysis of the PCA in Section 7.4. The
PCA has been applied in the Google Knowledge Vault
under the name “local completeness assumption” [15].

5 AMIE

We now outline the core algorithm of AMIE and its
implementation. We follow the description in [16] and
extend it with further explanations and details.

5.1 Algorithm

Algorithm. Algorithm 1 shows our approach to mine
rules. It takes as input a KB K, a threshold minHC
on the head coverage of the mined rules, a maximum
rule length maxLen and a threshold minConf on the
confidence. We discuss the choice of parameter values
later in this section. The algorithm maintains a queue
of rules (line 1), which initially contains all possible
head atoms, that is, all rules of size 1. It then iter-
atively dequeues a rule from this queue. If the rule
meets certain criteria (line 6), it is pushed to the out-
put. If the rule does not exceed the maximum number
of atoms maxLen (line 9), it goes through a refinement
process (described below) which expands the rule (the
parent) to produce a set of new rules (the children).
These new rules, if neither duplicates nor pruned by
the head coverage threshold (line 12), are also pushed
into the queue. This process is repeated until the queue
is empty. In the following, we will see in more detail the
different phases of the algorithm.

Refinement. One of the major challenges of rule min-
ing is to find an efficient way to explore the search space.
The naive algorithm of enumerating all possible combi-
nations of conjunctions of atoms is infeasible for large
KBs. Hence, we explore the search space by iteratively
extending rules using a set of mining operators (line 10
of Alg. 1). We see a rule as a sequence of atoms. The
first atom is the head atom and the others are the body
atoms. In the process of traversing the search space, we
can extend a rule by using one of the following opera-
tors:

1. Add Dangling Atom (Op)
This operator adds a new atom to a rule. The new
atom uses a fresh variable for one of its two ar-
guments. The other argument is a variable that is
shared with the rule, i.e., it occurs in some other
atom of the rule.

Algorithm 1 Rule Mining

1: function AMIE(KB K, minHC, maxLen, minConf)
20 g=[r(z,y),r2(z,y) ... (2, y)]

3: out = ()

4: while —q.isEmpty() do

5: r = q.dequeue()

6: if AcceptedForOutput(r, out, minConf) then
7 out.add(r)

8: end if

9: if length(r) < maxLen then

10: R(r) = Refine(r)

11: for all rules r. € R(r) do

12: if he(re) > minHC & re ¢ q then
13: q.enqueue(r.)

14: end if

15: end for

16: end if

17: end while

18: return out

19: end function

2. Add Instantiated Atom (Or)
This operator adds a new atom to a rule that uses
an entity for one argument and shares the other ar-
gument (variable) with the rule.

3. Add Closing Atom (O¢)
This operator adds a new atom to a rule so that
both of its arguments are shared with the rule.

Note that all above operators create connected rules. By
repeated application of these operators, we can generate
the entire space of rules as defined in Section 3. The
operators generate even more rules than those that we
are interested in, because they also produce rules that
are not closed. An alternative set of operators could
consist of Op and an operator for instantiation. But
these operators would not be monotonic, in the sense
that an atom generated by one operator can be modified
in the next step by the other operator. Therefore, we
chose the above 3 operators as a canonic set. We will
describe in Section 5.2 how these operators are executed
on the KB.

Algorithm 2 Decide whether to output a rule

1: function AccEPTEDFOROUTPUT(rule 7, out, minConf)

2: if r is not closed V con fpca(r) < minConf then
3: return false

4: end if

5: parents = parentsO f Rule(r, out)

6: for all r, € parents do

7: if confpea(r) < confpeca(rp) then

8: return false

9: end if

10: end for

11: return true

12: end function
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When to Output. Not every rule that the mining al-
gorithm dequeues is output. This is because some rules
may not be closed, or may not be better than rules that
have already been output. Algorithm 2 explains how
we decide if a rule should be output or not once it has
been dequeued. The algorithm first checks if the rule
is of the form described in Section 3 (i.e., closed and
connected). The refinement operators used by AMIE
(see Section 5.1) always produce connected rules. So,
at this point, the algorithm only checks if the rule is
closed. Then, the algorithm calculates the confidence of
the rule and performs a quality check. The rule should
have a confidence value that (i) passes the confidence
threshold (line 1) and (ii) improves over the confidence
of all its parents (line 7). The latter condition implies
that the refinements of a rule (B1A...AB,ABy,+1 = H)
must bring some confidence gain with respect to the
parent rule (ByA...AB, = H). Since support and head
coverage are monotonic metrics, we know that the child
rule will never have a higher score than its parent rule.
If the child rule has also lower confidence, then its qual-
ity is worse in all aspects than the parent rule. Hence,
there is no reason to output it.

A rule can have several parents. For example,
the rule actedin(x,y) A directed(z,y) = created(x,y)
can be derived by either adding directed(x,y)
to actedIn(z,y) = created(z,y) or by adding
actedIn(x,y) to directed(xz,y) = created(x,y). AMIE
requires a confidence gain over all parents of a rule.

Note that the decisions made at this point affect

only the output. They do not influence the refinement
process. i.e., a rule with low confidence can still be re-
fined to obtain new rules. This is because confidence is
a non-monotonic measure, i.e., we might get good rules
with further refinement of bad rules.
Parameters and Pruning. If executed naively, Algo-
rithm 1 will have prohibitively high runtimes. The in-
stantiation operator Oy, in particular, generates atoms
in the order of |R| x |€|. For this reason the algo-
rithm defines some parameters that determine when to
stop with the exploration of the space. These are the
minimal head coverage minHC, the maximal length
max Len and the minimal confidence minConf. Choos-
ing larger thresholds on head coverage, and choosing a
shorter maximum rule length will make the algorithm
stop earlier and output fewer rules. Relaxing the values
will make the algorithm output the very same rules as
before, and find also rules with a smaller head coverage
or a larger number of atoms. Thus, these parameters
define a trade-off between the runtime and the number
of rules.

Interestingly, a larger number of rules is not nec-
essarily a good thing. For instance, a rule that covers

only 1% or less of the instances of a relation is probably
not interesting. It simply lacks statistical significance.
Assuming that a user is not interested in such spurious
rules, we set minHC = 0.01 by default.

Additionally, we show in our experiments that rules
with more than 3 atoms tend to be very convoluted and
not insightful. Hence, we set maxLen = 3 by default.

Likewise, rules with low confidence will not be of
much use to the application. For example, a rule with
confidence 10% will make correct predictions in only
one out of ten cases. Assuming that a user is not inter-
ested in such kind of rules, we set minConf = 0.1 by
default.

That being said, if the user is interested in less con-

fident, more complex, or less supported rules, she can
change these thresholds. However, we believe that there
is no good reason to deviate from the default values. In
particular, relaxing these values will not output better
rules. This makes AMIE a system that can be run off
the shelf, without the need for parameter tuning.
Duplicate Elimination. As mentioned in Section 5.1
a rule can be derived in multiple ways. For example, the
rule actedIn(z,y) A directed(z,y) = created(z,y) can
result from the application of the operator O¢ to both
actedIn(z,y) = created(x,y) and directed(z,y) =
created(x,y). For this reason, AMIE checks for the ex-
istence of duplicate rules (line 12) in order to avoid
queuing the same rule multiple times. While checking
two rules for equality is expensive (it is a graph isomor-
phism verification task), we observe that two rules can
only be equal if they have the same head relation, the
same number of atoms and the same head coverage (or
support). This reduces drastically the set of rules that
have to be checked and therefore the time invested in
this task.
Multithreading. To speed up the process, our imple-
mentation parallelizes Algorithm 1, that is, the main
loop (lines 4 to 17) runs in multiple threads. This is
achieved by synchronizing the access to the centralized
queue from which the threads dequeue and enqueue and
the access to the output.

5.2 Count Projection Queries

AMIE tries to expand a given rule by applying all min-
ing operators defined in the last section (one each time).
We now explain how the operators are implemented and
executed on a KB.

Count Projection Queries. Assume that AMIE
needs to add the atom 7(z,y) to a rule. For efficiency
reasons, we do not blindly try all possible relations in
the place of r. Instead, we first find all relations that
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lead to a new rule that passes the head-coverage thresh-
old. In other words, we first fire a count projection query
of the form

SELECT r, COUNT(H)
WHERE HA B A...ABu_1 A r(X,Y)
SUCH THAT COUNT(H)> k

where k := minHC X size(H) (see Section 3.4) is the
translation of the head coverage threshold into an ab-
solute support threshold and the expression COUNT(+)
has COUNT(DISTINCT -) semantics (also for the rest
of this section). X and Y represent variables that
are either fresh or already present in the rule. The
results for r are the relations that, once bound in
the query, ensure that the head coverage of the rule
By AN...AB,—1 AN r(X,Y) = H is greater or equal
than minHC'. Notice also that for each value of r, the
expression COUNT(H) gives us the support of the new
rule. We now discuss the instantiation of this query for
all three operators.

Dangling Atom Operator. As an example, assume
that Algorithm 1 dequeues the following intermediate
non-closed rule for further specialization:

marriedTo(x, z) = livesIn(x,y)

The application of the operator Op will fire queries of
the form:

SELECT r, COUNT (livesIn(z,y)) WHERE
livesIn(xz,y) N marriedTo(z,z) AT(X,Y)
SUCH THAT COUNT (livesIn(z,y))> k

with
r(X,Y) € {r(z,w),r(z,w), r(w,x),r(w,z)}

That is, »(X,Y’) binds to each possible join combina-
tion of a new dangling atom, where w is an arbitrary
fresh variable. For intermediate rules, dangling atoms
are joined on the non-closed variables; z and y in this
example. If the rule is closed, dangling atoms are joined
on all the variables appearing in the rule.

Closed Atom Operator. The O¢ operator works in
the same fashion. In our example, the atom r(X,Y)
can take values in {7r(z,y),7(y,2)}. The method will
produce new atoms so that all open variables are closed.
In this example, the method produces the minimum
number of specializations required to close the variables
y and z. If there is only one closed variable, the method
will produce atoms between the open variable and all
the other variables. If the rule is already closed, the
operator tries with all possible pairs of variables in the
rule.

Instantiated Atom Operator. The operator O is
implemented in two steps. We first apply the opera-
tor Op to produce a set of intermediate rules with a

new dangling atom and a new fresh variable. Then for
each rule, we fire a count-projection query on the fresh
variable. This step provides bindings for one of the ar-
guments of the relation. For instance, the application
of the Oz operator to our example rule

marriedTo(x, z) = livesIn(x,y)

will first add all possible dangling atoms to the rule.
Let us consider one group of such atoms, e.g., those of
the form r(z,w). Then for each value of r that keeps
the rule above the head coverage threshold minHC,
the algorithm tries to find the best bindings for w. For
example, imagine we bind 7 to the relation citizenO f.
The second step will fire a query of the form:

SELECT w, COUNT (livesIn(z,y)) WHERE
livesIn(x,y) A marriedTo(x, z) A citizenO f(z, w)
SUCH THAT COUNT (livesIn(z,y))> k

Each binding of w forms a new rule that will be en-
queued and later evaluated for output.

Count-projection queries allow us to choose the re-
lationships and entities for the operators in such a
way that the head coverage for the new rules is above
minHC. We discuss how to implement count projection
queries efficiently in Section 5.3.

5.3 Query Implementation Details

In-Memory Database. We have shown [16] that
count projection queries translate into very inefficient
queries in both SPARQL and SQL. Therefore, we have
implemented an in-memory database that is specifically
geared towards this type of queries. Our implementa-
tion indexes the facts aggressively with one index for
each permutation of the columns subject (S), relation
(R), and object (0). This means that there are six in-
dexes, namely SRO, SOR, RSO, ROS, OSR and ORS. We
call them fact indexes. Each fact index is a hash table,
which maps elements of the first column to a nested
hash table. This nested hash table maps elements of
the second column to a set of elements of the third
column. For example, the index ORS has as keys the ob-
jects of all triples in the KB. It maps each object o to
a hash table. This hash table has as keys all possible
relations of the KB. It maps each relation r to a set
of subjects {s1,...,$n}, such that r(s;,0) for i = 1...n.
Fact indexes allow us to check the existence of a triple
in constant time. They also allow us to efficiently fetch
the instantiations of an atom.

In addition to the fact indexes, our database relies
on three aggregated indexes S, P, 0. These store the
aggregated number of facts for each key of the fact in-
dexes. For example, the aggregated index P stores the
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number of triples for each relation in the KB, whereas
the aggregated index S stores the number of triples
where each entity appears as subject.

Size Queries. Fact indexes in combination with ag-
gregated indexes can be used to determine the size of
an atom (size(a, K)), i.e., its number of bindings in the
KB K. For example, the size of the atom livesIn(z,y)
can be retrieved by a simple look-up in the aggregated
index P. The size of the atom livesIn(x,USA) requires
two lookups in the fact index ROS: the first lookup to get
the object values of livesIn and the second to retrieve
the list of subjects for the object value USA.
Existence Queries. One of the central tasks of the in-
memory database is to determine whether there exists
a binding for a conjunctive query. Algorithm 3 shows
how this can be implemented. The algorithm requires
as input a conjunctive query and a KB K. If the query
is a single atom (Line 3), we can directly verify if its size
is greater than zero using the indexes (Line 4). Other-
wise, we select the atom B, with fewest instantiations
using the indexes (Line 6), and run through all of its
instantiations (Lines 8 to 13). We apply such instanti-
ations to the remaining atoms (Line 9) and repeat this
process recursively (Line 10) until we end up with a
single atom. Since rules are connected query patterns,
the atom B, must share at least one variable with the
remaining atoms. This means that by instantiating By,
some variables in the remaining atoms become instan-
tiated, making the atoms more selective with every re-
cursive step.

Algorithm 3 Existence Queries
1: function ExXIsTS(Bi A ... A By, K)

2: q:=Bi1N..ANB,

3: if n =1 then

4 return size(B1, K) >0

5 else

6: s := argmin; {size(B;, )}

7 q9:=9q \ {Bs}

8 for all instantiations bs € Bs do
9: ¢’ := q instantiated with bindings from bs
10: if Exists(¢’, K) then

11: return true

12: end if

13: end for

14: end if

15: return false

16: end function

Select Queries. Algorithm 4 describes the implemen-
tation of SELECT DISTINCT queries on one projec-
tion variable for a conjunction of atoms. The algorithm
starts finding the atom with the fewest number of in-
stantiations Bg. If the projection variable z is in B
(Lines 5 to 11), the algorithm goes through all the in-

stantiations & of x, instantiates the query accordingly
and checks whether there exists a solution for the in-
stantiated query pattern in the KB (Line 8). If there is,
the solution Z is added to the result set. In contrast,
if the projection variable is not in the most restric-
tive atom B, (Lines 13 to 17), the algorithm iterates
through the instantiations of By and recursively selects
the distinct bindings of x in the remaining atoms (Line
16).

Algorithm 4 Select Distinct Queries

1: function SELECT(z, B1 A ... A By, K)
2: q:=B1N..ANB,

3 s := argmin; {size(B;,K)}

4 result ;== {}

5: if x € Bs then

6: for all instantiations & € * do

7 q’' := q instantiated with & for x
8 if Exists(¢’, K) then

9: result.add(&)

10: end if

11: end for

12: else

13: q:=q\{Bs}

14: for all instantiations bs € Bs do
15: q’' := q instantiated with bindings from bg
16: result.add(Select(z, ¢’, K))

17: end for

18: end if

19: return result

20: end function

Count Queries. To compute the confidence of a rule

= r(z,y), AMIE must fire a count query to esti-
mate the denominator of the confidence formula. For
the PCA confidence, such queries have the form:

SELECT COUNT(z, y) WHERE r(z,y') A B

where x, y are the variables in the head atom of the
rule, B = By, ..., B, are the body atoms, and r(x,y’)
is a variant of the head atom where the least-functional
variable has been replaced by a fresh variable 3 (see
Section 4.3). These queries return the number of dis-
tinct bindings of the head variables that fulfill the pat-
tern 7(z,y’) A B. They are used to calculate the con-
fidence of rules. The in-memory database first fires a
SELECT query on variable z:

SELECT DISTINCT z WHERE r(z,y') A ?

Then, for each binding of x, it instantiates the query
and fires another select query on variable y, adding up
the number of instantiations.

Count Projection Queries. Count projection queries
take the form

SELECT «, COUNT(H) WHERE H A By A ... A By,

SUCH THAT COUNT(H)> k
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These are the types of queries used to determine the
relations and instances for new atoms in the refinement
phase of AMIE. Algorithm 5 shows how we answer these
queries. The algorithm takes as input a selection vari-
able @, a projection atom H := R(X,Y), remaining
atoms By, ...B,, the threshold k£, and a KB K. The al-
gorithm returns a hash table with each instantiation
of the selection variable x as key and the number of
distinct bindings of the projection atom H as value.
We first check whether  appears in the projection
atom (Line 3). If that is the case (Lines 4 to 10), we
run through all instantiations of the projection atom,
instantiate the query accordingly (Line 6), and check
for existence (Line 7). Each existing instantiation in-
creases the counter for the respective value of the selec-
tion variable x (Line 8). If the selection variable does
not appear in the projection atom (Lines 12 to 18),
we iterate through all instantiations of the projection
atom. We instantiate the query accordingly, and fire a
SELECT DISTINCT query for @ (Line 14). We then
increase the counter for each value of « (Line 16).

Algorithm 5 Count Projection Queries
1: function SELECT(z, R(X,Y)AB1 A... A By, k, K)

2: map = {}
3: q:Bl/\.../\Bn
4 if z € {R,X,Y} then
5: for all instantiations r(z,y) € R(X,Y) do
6: q' :=q, replace Rby r, X by z, Y by y
7 if Exists(q¢’, K) then
8 map|z] + +
9: end if
10: end for
11: else
12: for all instantiations r(z,y) € R(X,Y) do
13: q' :=q, replace Rby r, X by =z, Y by y
14: X := Select(z, ¢, K)
15: for all x € X do
16: map(z] + +
17: end for
18: end for
19: end if
20: map = {(x = n) € map:n >k}
21: return map

22: end function

6 Scalability Improvements: AMIE+

Since the publication of the original AMIE frame-
work [16], we have extended it with a series of improve-
ments that allow the system to run over very large KBs.
In the following, we will introduce and discuss these
extensions and refer to this new version of AMIE as
AMIE+. Our extensions aim to speed up 2 different

parts of the main rule-mining algorithm: (i) the refine-
ment phase and (ii) the confidence evaluation.

6.1 Speeding Up Rule Refinement

In this section, we will discuss how AMIE+ speeds up
the rule refinement phase for specific kinds of rules. We
emphasize that the techniques described below do not
alter AMIE’s output in any way.

Maximum Rule Length. The maximum rule length
maxLen is an input parameter for our system. AMIE
stops exploring the search space as soon as all rules
with a length of at most maxLen have been produced.
During the mining process, AMIE creates connected
rules by applying all possible mining operators (line 10
in Algorithm 1) on previously created rules. Given a
maximum rule length maxLen and a non-closed Horn
rule of length maxLen — 1, AMIE+ will refine it only
if it is possible to close it before exceeding the length
constraint. This means that for a not-yet-closed rule of
length maxzLen — 1, AMIE+4 will not apply the add-
dangling-atom operator Op, because this results in a
non-closed rule, which will be neither output nor re-
fined. In the same spirit, if the same rule contains more
than two non-closed variables (see Section 3.3), AMIE+
will skip the application of the add-closing atom oper-
ator O¢. This happens because an application of the
operator O¢ can close at most two variables with one
atom. This reasoning also applies to the instantiation
operator Oy: rules with more than one non-closed vari-
able are not refined with instantiated atoms, because
the addition of an instantiated atom can close at most
one variable.

Perfect Rules. By definition, a rule cannot achieve a
PCA confidence that is higher than 100%. Thus, once
a rule has achieved 100% PCA confidence, we can stop
adding new atoms. This is because the confidence can-
not increase and the support can only decrease. Hence,
any refinement is futile and will be discarded by the
output routine described in Algorithm 2. We call rules
with 100% PCA confidence perfect rules.

Simplifying Projection Queries. Support is mono-
tonically decreasing with the length of the rule (Sec-
tion. 3.4). Hence, whenever we apply an add-dangling-
atom operator to a rule R, (the parent rule) to pro-
duce a new rule R, (the child rule), the support of R,
will likely be smaller than the support of R,. However,
there is one case in which the addition of a dangling
atom cannot reduce the support. This happens when
R, (i) already contains atoms with the same relation as
the dangling atom and (ii) these atoms have a variable
in common with the dangling atom. An example is the
parent rule R, : livesIn(z,y) = citizenOf(z,y) and
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the child rule R, : citizenOf(z,y) A livesIn(z,y) =
citizenO f (x,y). Intuitively, the addition of the dan-
gling atom citizenOf(z,y) cannot further restrict the
support of R, because the new atom is a less restric-
tive version of the atom citizenO f(x,y). This means
that z will always bind to the same values as x. From
this observation, it follows that the support of R. can
be rewritten as

supp(R.) = #(x,y) : citizenO f(x,y) A livesIn(x,y)
A citizenO f(x,y)

supp(R.) = #(x,y) : livesIn(z,y) A citizenO f(x,y)

which is the same as supp(R,). Thus both R, and R.
have the same support. This observation can be lever-
aged to speed up projection queries. The query for
supp(R,) has one fewer join and thus executes faster.

6.2 Speeding up Confidence Evaluation

Confidence Scores. A significant part of the run-
time of our algorithm is spent on computing confidence
scores (up to 35% in our experiments). The reason is
that the calculation of confidence (both PCA and stan-
dard) requires the calculation of the number of instanti-
ations of the rule body. If the body contains atoms with
many instantiations, the joins can be very expensive to
compute.

At the same time, we will not output rules with a
confidence below the threshold minConf (Section 5.1).
This means that the system might spend a significant
amount of time evaluating expensive confidence queries
only to find out that the rule was of low confidence and
will not be output. An example of such a rule (which
we will also use later in this section) is:

directed(z, z) A hasActor(z,y) = married(z,y)

This rule concludes that a director is married to all the
actors that acted in his/her movies, producing a total
of 74249 married couples in YAGO2. AMIE needs more
than 500ms (more than twice the average cost: 200ms)
to calculate the confidence of this intuitively bad rule.
Approximation. We have developed a method to ap-
proximate the confidence value of such a rule very
quickly. Our approximation is based on statistics, such
as the functionalities of the atoms, or the size of the
joins between two relations. We pre-compute these
quantities, so that they can be accessed in constant
time. As a result, AMIE+ prunes the example-rule
above in less than 1ms.

Our approximation is designed such that it is more
likely to overestimate confidence than to underestimate

it. This is important, because we use it to prune rules,
and we want to avoid pruning rules that have a higher
confidence in reality. Our experiments (see Section 7.2)
show that this technique prunes only 4% of the rules
erroneously. In return, it makes AMIE+ run in the
range of minutes instead of days. It is thus one of the
main techniques that allow AMIE+ to run on large-
scale KBs.

In Section 6.2.1, we give an overview of the confi-
dence approximation and we explain for which form of
rules we use it. Section 6.2.2 describes how the size of
the rule’s body is approximated. Section 6.2.3 discusses
the underlying assumptions made by our approximation
and explains how it is used within AMIE+. Finally, Sec-
tion 6.2.4 derives upper bounds for the confidence of a
particular class of rules.

6.2.1 Confidence Approximation

Computing Confidence. Recall that confidence and
PCA confidence (see Sections 4.2 and 4.3) are defined
as:

supp(B = ri(x.y))

con § Th{Z =
f(B = rp(z,y)) #(x,y):ﬂzlw-wzmiﬁ

and

confpca(§ = rp(z,y)) =
supp(B = ru(w,y))
#(x,y) 321, 2m, Y § Arp(z,y')

By the time AMIE has to calculate the confidence of
a rule, the system already knows the support of the
rule. Hence, the remaining step is to fire the queries
for the denominators of the confidence expressions (see
Sections 4.2 and 4.3). We denote them by dgiq and dpeq:

dstd(g = rp(z,y)) = #(x,y) : J21, ..., 2m B (2)

dpca(§ = rp(z,y)) = #(x,y): 321, .., 2m, Y
Arp(z,y)

3)

Our aim is to derive a conservative approximation for
dpea (O dstq) denoted by dpeq. By plugging this expres-
sion into the confidence formula, we get

cg”?fpca(R) = w

(4)

Let us reconsider Eq. 3 and rewrite it as follows:

dpca(g(x,y) = rp(x,y)) = #(x,y) : 21,y 2my Y
(z,y) Arn(x,y')
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Here, we resort to an abstraction that treats the body
of the rule B(x,y) as a relation on the head variables.
If B has functionality fun(B), this means that, on
average, each entity in variable x relates to #yper » =
1/fun(§) bindings in y. If we denote the domain and
range of a relation r as dom(r) and rng(r) respectively,

the expression #yper o - |[dom(B)| gives us an estimate

for the body size of the rule, i.e., dsta( B = rp(x,y)).
However, for the PCA confidence, the denominator is
restricted also by the entities in the domain of the head
relation. This consideration leads us to the expression:

dyea(R) = |dom(B) N dom(ry)] - #4per (5)

In the following, we first describe for which kind of rules
it makes sense to use this approximation and then, in
Section. 6.2.2, we discuss how to calculate the terms of
Equation 5 in an efficient way.

When to Use the Approximation. Using any form
of confidence approximation always involves the risk of
pruning a good rule. At the same time, if the exact con-
fidence value is cheap to compute, the potential gain of
using an approximation is small. For this reason, we
only use the confidence approximation for rules whose
exact confidence is relatively “expensive” to compute.
These rules typically have a large number of bindings in
the body because of the presence of intermediate vari-
ables. This translates into higher runtimes and memory
usage. An example is the rule we saw before:

directed(z, z) A hasActor(z,y) = married(x,y)

In this example, a director z is related to many movies
z (the intermediate variable) that have different ac-
tors y. Hence, we consider a rule expensive if its body
(i) contains variables other than the variables appear-
ing in the head atom (z in our example) and (ii) if
these additional variables define a single path between
the head variables (z — z — y in our example).
Note that rules without intermediate variables (such
as livesIn(z,y) A bornIn(z,y) = diedIn(x,y)) or that
contain multiple paths between the head variables (such
as livesIn(z,z1) A locatedIn(z1,y) A bornIn(z,z2) A
locatedIn(z2,y) = isCitizenO f(z,y)) are usually as-
sociated with more selective queries. In these examples,
both livesIn and bornIn join on z in the body and re-
strict the size of the result.

We therefore use the confidence approximation only
for rules where the head variables x,y are connected
through a single chain of existentially quantified vari-
ables z1,...,2,_1. These rules have the form:

ri(z,z1) Ara(z1, 22) A oo Arp(2n—1,y) = m(x,y)

In order to write a rule in this canonical form, we may
have to replace some relations by their inverses (i.e.,
substitute ro(22,21) with 75 (21, 22)) and change the
order of the atoms.

We will now see how to compute the approximation
for this type of rules.

6.2.2 Computing the Approximation

In the following, we denote the domain and range of
a relation r by dom(r) and rng(r), respectively. In
addition, we use the shortcut notations ovg,(r1,72),
ovrg(r1,72), 0V4a(r1,72), 0V (11, 72) for the size of the
overlap sets between the domains and ranges of pairs
of relations. For example,

ovgr(r1,7r2) = |dom(r1) Nrng(rsa)|
Let us now consider again the rule
directed(z, z) A hasActor(z,y) = married(x,y)

which implies that a director is married to all actors
that acted in his movies. In this case, dpeq (R) is defined
as

dpea(R) = #(x,y) : 3 2,y : directed(z, z)
A hasActor(z,y) NisMarried(z,y’)

Here ?(x, y) = directed(x, z) ANhasActor(z,y). To cal-
culate the approximation defined in Equation 5, we
need to calculate the number of directors in § that
are married, i.e., [dom(B) N dom(isMarried)| and
the number of actors y associated to each director =,
i.e., #Yper - We focus on the latter term. This requires
us to walk from the most to the least functional vari-
able, i.e., through the path x — 2z — y, connecting a
director to his potential actors. If fun(r) and ifun(r)
denote the functionality and inverse functionality of the
relation r, respectively, then walking through this path
involves the following steps:

1. For each director z, the relation directed will pro-
duce on average m movies z.

2. Some or all of these movies z will find join partners
in the first argument of hasActor.

3. For each movie z, hasActor will produce on average

1

fun(hasActor) actors y.

4. Each of these actors in y acted on average in

m movies of the hasActor relation.

Up to step 2, we can approximate the number of distinct
movies that bind to the variable z for each director in
the variable z as:

B ovq(directed, hasActor)

~ |rng(directed)| x fun(directed)

#Zper T
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Here, |rng(directed)| is the number of distinct movies in
the range of directed and ov,.q(directed, hasActor) de-
notes the distinct movies in the overlap between the ob-
jects of directed and the subjects of hasActor. The term
m corresponds to step 1. Our join estimation
assumes that the movies in the overlap of directed and
hasActor are uniformly distributed among the different
directors in directed.

For steps 3 and 4, we can approximate the number
of actors in the variable y for each movie in the variable
z as follows:

4 __ifun(hasActor)
Yper == fun(hasActor)
The term m corresponds to Step 3. At the

end of this step, we already have, for a single direc-
tor x, a bag of actors y associated to him. However,
these are not necessarily distinct actors, since x and y
are connected through the variable z (movies). There-
fore, a duplicate elimination step is needed. To see why,
assume that each director has directed on average 3
movies and that each movie has 5 actors. Then, the
rule will produce on average 15 actors y for each direc-
tor . However, there is no guarantee that these actors
are distinct. If the director trusts specific actors and
collaborates repeatedly with them in some or all of his
movies, there will be less than 15 distinct actors. The
term ifun(hasActor) achieves this duplicate elimina-
tion: since each actor participated in m dif-
ferent movies, the actor contributes to the final count
with a weight that is inversely proportional to this num-
ber.

In this way of performing duplicate elimination, a
single actor y belongs to m
z, which are chosen from all the movies in the relation
hasActor. In reality, we want the number of different
movies to be chosen from those that remain after Step
2, i.e., the average number of movies by the same di-
rector that an actor acts in. This number is obviously
smaller, which implies that the factor ifun(hasActor)
is a pessimistic estimator. This makes our approxima-
tion an underestimation of the real confidence denom-
inator, and the overall confidence approximation an
overestimation of the actual confidence.

With all that said, we can estimate the number of
actors y that are supposed to be married with each
director z as:

different movies

#yper x = #Zper z X #yper z

To calculate c/l\pca of Eq. 5, we are now only missing
N dom(isMarried)|. Here

we make the simplifying assumption that dom(B) =
dom(directed), so that the expression becomes the size

the expression |dom(B)

of the join between the relations directed and married,
on the subject argument, i.e., ovgq(directed, married).

To summarize, the factor c/l\pca(R) for arule ri(z, 2)A
ro(z,y) = r1(x,y) can be approximated by:

~ 0vgq(r1,mh) - 0vpa(r1,12) - i fun(rs)
oo ) = = ) g ()| - Funra)

For the more general case of a rule that contains n — 1
existential variables forming a single path from z to y

ri(z,z1) Ara(z1,22) A oo Arp(zn—1,y) = mn(z,y)

the formula becomes:

n

~ o ovaa(r1,7h) ovpq(ri—1,73) i fun(r;)
dpca(R) = Fun(rr) H [rng(ri_1)|  fun(r;)

=2

6.2.3 Discussion

Application. We precompute the functionalities, the
inverse functionalities, and the overlaps between the do-
mains and ranges of each pair of relations when the
KB is loaded into the in-memory database. This re-
sults in longer loading times, but pays off easily during
rule mining. The sizes of the ranges of the relations
are given by our indexes in constant time. After this
preprocessing, the approximation of the confidence can
be computed as a simple product of precomputed val-
ues without actually firing a single query. We apply the
approximation only if the query is expensive (see Sec-
tion 6.2.1). If the approximated value is smaller than
the threshold, we abandon the rule. Otherwise, we com-
pute the exact PCA confidence and proceed as usual.
Assumptions. Our approximation makes a series of
assumptions. First, we make use of functionalities as
average values. In other words, we assume that for any
relation all objects are uniformly distributed among the
subjects (which corresponds to a zero variance). In real-
ity, this is not always the case. Additionally, the estima-
tion of the expression #zpe,  uses the term %
This term assumes that the entities in the overlap are
uniformly distributed among the entities in the range
of r1. This also introduces some error that depends on
the variance of the real distribution. Nevertheless, the
duplicate elimination largely underestimates the count
of #Yper 2, and therefore we expect our approximation
to usually result in an overestimation of the actual con-
fidence. This is indeed the case, as our experiments in
Section 7.2 show.
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6.2.4 Confidence Upper Bounds

In some particular cases, we can derive lower bounds for
the confidence denominator (dpcq, dsiq) instead of using
the approximation described in Section 6.2.2. Consider
a rule of the form:

T(Cﬂ, Z) A 7n(ya Z) = 7ah(xv y)
Here, the confidence denominator is given by
dsta == #(x,y) : Jz 1 (2, 2) Ar(y, 2)

Since both atoms contain the same relation, we know
that all the entities of z in the first atom will join with
the second atom. Furthermore, we know that the join
will result in at least one y-value for each binding of =,
i.e., the case where y = x. This allows us to deduce

dsta > #(x,x) : z :r(x, 2) Ar(z, 2)

dstq > #x : 3z r(z, 2) (6)

This expression can be calculated in constant time with
the indexes of our in-memory database (Section 5.3).
Similar analyses can be used for rules of the form
r(z,2) Ar(z,y) = m(x,y).

The same reasoning applies to the denominator of
the PCA confidence, yielding

dpca > #x 32,y r(x,2) ANrp(2,y) (7)

Although this expression requires to fire a query, it
contains fewer atoms than the original expression and
counts instances of a single variable instead of pairs. It
is therefore much cheaper than the original query.

Both Inequalities 6 and 7 define lower bounds for the
number of pairs in the denominator expressions of the
standard and the PCA confidence, respectively. Thus,
AMIE+ uses them to upper-bound the respective confi-
dence scores. If the upper bound is below the threshold,
the rules can be pruned even before computing the ap-
proximate confidence denominator.

7 Experiments

We conducted four groups of experiments. In the first
round (Section 7.2) we compared AMIE with AMIE+.
We show the performance gain carried by each of the
new techniques presented in Section 6. In the sec-
ond group of experiments (Section 7.3), we compared
AMIE+ to competitor systems. The comparison was
based on runtime and prediction quality of the rules. In

KB ‘ Facts ‘ Subjects ‘ Relations
YAGO2 core 948K 470K 32
YAGO2s 4.12M 1.656M 37
DBpedia 2.0 6.70M 1.38M 15954
DBpedia 3.8 | 11.02M 2.20M 650
Wikidata 8.4M 4.00M 431

Table 2: Knowledge bases used to test AMIE and
AMIE+.

the third round of experiments (Section 7.4), we inves-
tigated the Partial Completeness Assumption (PCA).
We evaluated how often the PCA actually holds in a
real-world KB (YAGO). Finally, in Section 7.5, we con-
ducted a proof of concept to show how the rules mined
by AMIE can be used to make predictions. We com-
pared the performance of the PCA confidence with the
performance of the standard confidence for this pur-
pose. We also showed how post-processing of the results
can increase the precision of our predictions.
Our experimental results show that:

1. The optimizations implemented in AMIE+ allow us
to run on KBs with more than 1K relations and 10M
facts in a matter of minutes — while AMIE took more
than one day for them.

2. AMIE, and in particular AMIE+, outperforms com-
peting systems by a large margin in terms of the
quality and the quantity of the mined rules.

3. The PCA is often a valid assumption, even for rela-
tions that are not strictly functional.

4. Type constraints can improve the precision of the
predictions made by rules to about 70%.

7.1 Experimental Setup

Hardware. All experiments were run on a server with
48GB of RAM, 8 physical CPUs (Intel Xeon at 2.4GHz,
32 threads) and using Fedora 21. All rules and all exper-
imental results are available at http://www.mpi-inf.
mpg.de/departments/ontologies/projects/amie/.
Datasets. We ran our experiments on different KBs.
Table 2 shows a summary of the KBs used for our ex-
periments. In all cases, we removed all facts with liter-
als (numbers and strings). This is because literal values
(such as geographical coordinates) are shared by only
very few entities, which makes them less interesting for
rule mining. For both DBpedia 2.0 and 3.8, we used the
person data and mapping-based properties datasets.
For Wikidata, we used a dump from December 2014,
available for download at http://tools.wmflabs.
org/wikidata-exports/rdf/exports/20140420/.

4 Relations with more than 100 facts only.
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Settings. In their default settings, AMIE and AMIE+ gztgsgt Rules Reﬁnen(l;nt OUtP;t Dup. e;m-
. ) . . _ 2 135 87.48% 8.79% 3.74%

use a 1% head coverage threshold (i.e., minHC = 0.01), YAGO?2 () | 19132 53 54% 35.64% 10.89%

and a maximum of 3 atoms for rules (i.e., maxLen = 3,
see Section 5.1). By default, AMIE does not impose
a confidence threshold, i.e., minConf = 0. In con-
trast, AMIE+ defines a PCA confidence threshold of
0.1, i.e., minConf = 0.1 (Section 6.2). Unless ex-
plicitly mentioned, the instantiation operator O; was
disabled. (“without constants”). Both systems use as
many threads as available logical cores in the system (32
in our hardware platform). Any deviation from these
settings will be explicitly stated. Whenever AMIE and
AMIE+ behave equivalently, we will refer to these sys-
tems jointly as AMIE(+).

Metrics. We compared AMIE and AMIE+ in terms of
quality and runtime to two popular state-of-the-art sys-
tems: WARMR [13,14] and ALEPH?. To have an equal
basis for the comparison with these systems, we made
AMIE(+) simulate their metrics. AMIE(+) can thresh-
old on support, head coverage, standard confidence, and
PCA confidence, and can rank by any of these. She can
also deviate from the default setting and count support
on one of the head variables (like WARMR). In that
case, AMIE(+) counts on the most functional variable
of the relation (see Section 3.2 about functions). Again,
any such deviation from the default behavior will be
mentioned explicitly.

7.2 AMIE vs. AMIE+

In this section, we discuss the runtime improvements of
AMIE+ over the previous version AMIE. Let us first
discuss only AMIE. Recall from Section 5.1 that the
AMIE algorithm consists of three main phases:

— Refinement (i.e., rule expansion).
— Output, which includes confidence calculation.
— Duplicate elimination.

Table 3 shows the proportion of time spent by AMIE
in each phase when running on YAGO2 — first without
constants and then with constants. We observe that
the refinement and output phases dominate the sys-
tem’s runtime. When constants are not enabled, most
of the time is spent in the refinement phase. In contrast,
the addition of the instantiation operator increases the
number of rules and therefore the time spent in the out-
put and duplicate elimination phases. In both cases,
the duplicate elimination is the least time-consuming
phase. The enhancements introduced by AMIE+ aim
at reducing the time spent in the refinement and out-
put phases.

Table 3: Time spent in the different phases of the AMIE
algorithm on YAGO?2, first without the instantiation
operator and then with this operator.

Runtime Comparison. Table 4 shows the runtimes of
AMIE and AMIE+. We set a threshold of 0.1 PCA Con-
fidence for AMIE to make it comparable with AMIE+.
For the latter, we show the results in several categories:

1. Only output: only the improvements affecting the
output process are active, i.e., the confidence ap-
proximation and the confidence upper bounds, both
with confidence threshold 0.1 (Section 6.2).

2. Only refinement: only the improvements affecting
the refinement process (Section 6.1) are active,
namely the maximum rule length (MRL), the query
rewriting (QRW) and the perfect rules (PR).

3. Output + MRL/QRW/PR: the output improve-
ments and one of the refinement improvements are
active.

4. Full: All improvements are active.

We first note that AMIE is not able to finish within
a day for YAGO2s, DBPedia 2.0, DBpedia 3.8, and
Wikidata. In contrast, AMIE+4 can mine rules on all
these datasets in a matter of hours, and even minutes.
For YAGO2 (const), we can see that the full version
of AMIE+ is 3.8x faster than AMIE. For YAGO2, this
speed-up nearly doubles to 6.7x. This boost is mainly
due to the improvements in the refinement process:
AMIE+ with only these improvements is already 3.2x
faster on YAGO2 (const) and 6.5x faster on YAGO2
than AMIE. This is not surprising since for YAGO2
most of the time is spent on refining rules (Table 3).
Therefore, the improvements in this phase result in a
significant gain.

Notice also that AMIE+ (only output) is only
marginally faster than AMIE for the YAGO2 family
of datasets. This is because the confidence approxima-
tion heuristic requires computing the join cardinalities
for every pair of relations in the KB. This means that
there is a trade-off between an initial additional cost for
pre-computing these values and the potential savings.
For the case of YAGOZ2, the output phase takes only
around 9% of the overall mining time, i.e., the confi-
dence evaluation is not really a problem.

For YAGO2s, DBpedia 2.0, DBpedia 3.8, and Wiki-
data, we see that using only the refinement improve-
ments or only the output refinements is not enough. If
we activate all improvements, however, AMIE+ is able
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AMIE+
KB AMIE Only Only Output + Full
Refinement Output MRL QRW PR

YAGO2 3.17min 29.37s 2.82min 29.03s 38.16s 2.80min 28.19s
YAGO2 (const) | 37.57min 11.72min 37.05min 8.90min 12.04min 36.48min 9.93min
YAGO2 (4) 27.14min 9.49min 26.48min 8.65min 15.69min 24.20min 8.35min
YAGO2s > 1 day > 1 day > 1 day 1h 7min 1h 12min > 1 day 59.38min
DBpedia 2.0 > 1 day > 1 day > 1 day 45.11min | 46.37min > 1 day 46.88min
DBpedia 3.8 > 1 day > 1 day 11h 46min | 8h 35min | 7h 33min | 10h 11min | 7h 6min
Wikidata > 1 day > 1 day > 1 day 1h 14min | 7h 56min > 1 day 25.50min

Table 4: Runtime and output comparison between AMIE and AMIE+ on different KBs. On YAGO2 (4), maxLen =
4. On YAGO2 (const), the instantiation operator was switched on.

to terminate in the majority of cases within an hour or
in the worst case over-night.

Table 4 also shows the benefit of individual re-
finement improvements over the baseline of AMIE+
(only output). The improvement that offers the high-
est speedup (up to 6.7x) is the maximum rule length
(MRL), closely followed by query rewriting (QRW, up
to 5.1x speedup), whereas perfect rules (PR) rank last.
This occurs because MRL is much more often applicable
than QRW and PR. Besides, perfect rules are relatively
rare in KBs. AMIE found, for instance, 1 perfect rule
on YAGO2s and 248 (out of 5K) in DBpedia 3.8.

All in all, we find that AMIE+ can run on several

datasets on which AMIE was not able to run. Fur-
thermore, on datasets on which both can run, AMIE+
achieves a speed-up of up to 6.7x.
Output Comparison. Table 6 shows a comparison
of AMIE and AMIE+ in terms of output (number of
rules). For AMIE+ (full), we report the number of rules
that were pruned by the confidence approximation. To
assess the quality of the confidence approximation, we
report in addition the pruning precision. The prun-
ing precision is the ratio of rules for which the confi-
dence approximation introduced in Section 6.2.2 over-
estimates the actual confidence. We calculate this ratio
by counting the number of times that the heuristics pro-
duce a higher value than the real confidence (among the
rules on which the approximation is applicable). For ex-
ample, a pruning precision of 96% means that in 4% of
the cases the system erroneously pruned rules with a
confidence higher than 0.1. As in the previous section,
we set a threshold of 0.1 PCA Confidence for AMIE.
We also interrupted the system if it ran more than one
day. In those cases, we report the output until the point
of interruption (denoted by a “*” in Table 6).°

As we can see, the pruning by approximation does
not entail a serious decrease in the quality of the output:

5 In these cases, the pruning precision in Table 6 was com-
puted by comparing the output of AMIE+ to the output of
AMIE on the mined subset.

y:1sCitizenOf (x,y) = y:livesIn(z,y)

y:wasBornIn(z,y)A y:isLocatedIn(y, z) = y:citizenOf (z, z)
y:hasWonPrize(x, G. W. Leibniz) = y:livesin(z, Germany)
y:hasWonPrize(x, Grammy) = y:musicalRole(x, Guitar)
d:countySeat(z,y) = d:largestCity(z,y)
d:jurisdiction(z,y)A d:successor(z, z) = d:jurisdiction(z,y)
w:ownedBy(x,y) = w:subsidiary(y, x)

w:relative(y, z) ANw:sister(z, x) = w:relative(x, y)

Table 5: Some Rules mined by AMIE on different
datasets (y: YAGO, w: Wikidata, d: DBpedia).

AMIE AMIE+ (full)
KB Rules Rules Pruned Prun. prec.
YAGO2 68 68 24 100.00%
YAGO2 (c) 15634 15634 24 100.00%
YAGO2 (4) 645 645 203 100.00%
YAGO2s 94%* 94 78 100.00%
DBpedia 2.0 | 24308* | 112865 5380 98.26%
DBpedia 3.8 2470* 5087 2621 98.41%
Wikidata 889%* 1512 773 95.35%

Table 6: Output comparison of AMIE (PCA conf > 0.1)
and AMIE+ full. Starred: output after processing for 1
day. On YAGO2 (4), maxLen = 4. On YAGO2 (const),
the instantiation operator was switched on.

AMIE+ does not miss more than 5% of the rules with
confidence above 10%. At the same time, the pruning
yields a speed-up by a factor of up to 3, as Table 4
shows. Table 5 shows some examples of rules with high
confidence that we mined.

Longer Rules. To investigate the performance of
AMIE and AMIE+ with longer rules, we ran both sys-
tems also with maxLen = 4. As Table 4 shows, this af-
fects the runtime: AMIE on YAGO2 with maxLen = 4
is 9x slower than with maxLen = 3. This is because
the number of rules is much larger now: As Table 6
shows, the number of output rules increases by one or-
der of magnitude from 68 to 645. Irrespective of the
rule length, the confidence approximation of AMIE+
works correctly, with a 100% pruning precision. At the
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exports(y, z) A imports(y, z)A\ livesIn(z,y) = citizenOf (z,y)
diedIn(zx, z)A locatedIn(z,y)A livesIn(z, z) = politician(z,y)
advisor(z,w)A citizenOf (w, y)A livesIn(z,z) = deals(z,y)

Table 7: Examples of rules mined by AMIE on YAGO2
with n = 4 atoms

Category Relation % of hits
Functions wasBornln 96.67
diedIn 96.42
hasCapital 93.33
Quasi- hasCurrency 75
Functions hasOfficial Language 73.33
graduatedFrom 64.29
isCitizenOf 96.42
directed 1 90
hasAcademicAdvisor 88.89
created 1 86.67
isLeaderOf 89.47
isPolitician Of 100
isAffiliated To 89.47
Granularity isLocatedIn 50
Differences livesIn 20.83
Implicit livesIn 20.83
Assumptions
Source influences 1 34.78
Incompleteness imports 0
exports 0
actedIn=1 0
worksAt 89.66
hasMusicalRole 22.22
deals With 10
Extraction participatedIn—1 48.14
Incompleteness isMarriedTo 79.31
produced 1 56.67
actedIn=1 0
playsFor 20
holdsPolitical Position | 26.67
hasChild =1 26.67
hasWonPrize 31.03
deals With 10
influences 1 34.78
hasMusicalRole 22.22

Table 8: Categories of relations w.r.t. the validity of the
PCA.

same time, the approximation reduces the runtime dras-
tically, so that AMIE+ runs 3 times faster than AMIE
on rules with 4 atoms. Table 7 shows some rules with
4 atoms mined on YAGOZ2. Such rules motivate us to
keep the default rule length at 3 atoms.

7.3 AMIE(+) vs. State-of-the-Art Systems

In this section we compare AMIE and AMIE+ to two
state-of-the-art rule mining systems that are publicly
available: WARMR [17] and ALEPH [31]. We compare
the systems in terms of runtime and quality of produced
rules. A more detailed description of these experiments

AMIE AMIE+
6.02s 2.59s
1.43min  1.45min

Constants ‘ WARMR
no 18h
yes (48h)

Table 9: Runtimes on YAGO2 sample

(for AMIE), as well as a comparison of usability, can
be found in [16]. For these experiments, we did not use
any confidence threshold (minConf = 0), and hence
AMIE+ only used refinement improvements.

7.8.1 AMIE(+) vs. WARMR

WARMR is a system that unifies ILP and associa-
tion rule mining. Similar to APRIORI algorithms [4],
it performs a breadth-first search in order to find fre-
quent patterns. It generates Datalog queries of the
form “? — Ay, As, ..., A,”, where A; are logical atoms.
WARMR applies a closed world assumption for assess-
ing the quality of the produced rules.

Runtime. We first compare WARMR with AMIE and
AMIE+ in terms of runtime only. For a fair comparison,
we have to make sure that both systems run in the
same settings. Hence, we tweaked AMIE(+) to simulate
WARMR'’s notion of support. We run all systems with
an absolute support threshold of 5 entities. We also
use the standard confidence as quality metric for rules,
instead of the PCA confidence.

In our initial experiment, WARMR, was not able to
terminate on YAGO2 in a time period of 1 day. There-
fore, we created a sample of YAGO2 containing 47K
triples (see [16] for details about the sampling method).
Table 9 summarizes the runtime results for WARMR,
AMIE, and AMIE+ on this dataset. We see that AMIE
mines her rules in 6.02 seconds, and AMIE+ even in 3
seconds. WARMR, in contrast, took 18 hours.

We also ran both systems in a mode that allows
them to mine rules with constants. For AMIE(+), this
means enabling the instantiation operator Oy (see Sec-
tion 5.1). AMIE and AMIE+ completed the task in less
than 2 minutes. WARMR, in contrast, did not termi-
nate in 3 days. Therefore, we ran it only for the rela-
tions diedIn, livesIn, wasBornIn, for which it took 48h.
To understand this drastic difference, one has to take
into account that WARMR is an ILP algorithm written
in a logic programming environment, which makes the
evaluation of all candidate queries inefficient.
Results. After filtering out mnon-connected rules,
WARMR mined 41 closed rules. AMIE and AMIE+,
in contrast, mined 75 closed rules, which included the
ones mined by WARMR. We checked back with the
WARMR team and learned that for a given set of
atoms Bi,...,B,, WARMR will mine only one rule,
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picking one of the atoms as head atom (e.g., By A ... A
B, _1 = By,). AMIE(+), in contrast, will mine one rule
for each possible choice of head atom (as long as the
thresholds are met). In other words, AMIE(+) with
the standard support and confidence measures simu-
lates WARMR, but mines more rules. Furthermore, it
runs orders of magnitude faster. Especially for large
datasets for which the user would have needed to use
complicated sampling schemes in order to use WARMR,
AMIE(+) can be a very attractive alternative. Even for
smaller datasets with rules with constants, AMIE(+)
can provide results while WARMR cannot. Moreover,
AMIE(+) does not make a closed world assumption as
WARMR does. In Section 7.4 we show that the PCA
confidence defined by AMIE(+) is more suitable than
the standard confidence to identify predictive rules in
a web-extracted KB designed under an open world as-
sumption.

7.3.2 AMIE(+) vs. ALEPH

ALEPH is an ILP system that implements a variety
of scoring functions for measuring a rule’s quality. For
our experiments we used the Positives-only evaluation
function [28,31], which is the most interesting for our
setting, since it does not require the existence of explicit
negative examples. It takes random facts as negative
evidence, instead:

R+1 L

= log(P) — log— "~ ~
Score :=log(P) lOgRsize+2 Iz

Here, P is the number of known true facts covered (KB-
true, or A resp., in Figure 1), R is the number of random
examples covered, Rsize is the total number of ran-
doms, and L is the number of atoms in the rule. The
intuition behind the formula is that a good rule should
cover many positive examples, and few or no randomly
generated examples. This ensures that the rule is not
overly general. Furthermore, the rule should use as few
atoms as possible.

Runtime. We ran AMIE, AMIE+ and ALEPH on
YAGO2. For ALEPH, we used the positive-only evalu-
ation function with Rsize = 50 and we considered only
clauses that were able to explain at least 2 positive ex-
amples, so that we will not get grounded facts as rules
in the output. For a fair comparison, we also instructed
AMIE and AMIE+ to run with a support threshold of
2 facts.

Table 10 shows the results. AMIE terminated in 4.41
minutes and found rules for all relations. AMIE+ was
slightly faster. ALEPH runs for one head relation at
a time. For some relations (e.g.isPoliticianOf), it ter-
minated in a few seconds. For others, however, we had

KB ‘ ALEPH AMIE  AMIE+
YAGO?2 full 4.96s to > 1 day 4.41min  3.76min
YAGO2 Sample | 0.05s to > 1 day 5.65s 2.90s

Table 10: Runtimes ALEPH vs. AMIE vs. AMIE+

Relations ‘ Runtime
isPoliticianOf, hasCapital, hasCurrency < 5min
dealsWith, hasOfficialLanguage, imports < Smin
isInterested, hasMusicalRole <19min
hasAcademicAdvisor, hasChild > 1 day
isMarriedTo, livesIn, worksAt, isLocatedIn > 1 day

Table 11: Runtimes of ALEPH on YAGO2

Relations ‘ Runtime
diedIn, directed, hasAcademicAdvisor < 2min
graduatedFrom, isPoliticianOf, playsFor < 2min
wasBornln, worksAt, isLeaderOf < 2min
exports, livesIn, isCitizenOf < 1.4h
actedIn, produced, hasChild, isMarriedTo > 1 day

Table 12: Runtimes of ALEPH on YAGO2 sample

to abort the system after 1 day without results (Ta-
ble 11). For each relation, ALEPH treats one positive
example at a time. Some examples need little process-
ing time, others block the system for hours. We could
not figure out a way to choose examples in such a way
that ALEPH runs faster. Hence, we used the sample of
YAGO?2 that we created for WARMR. Again, runtimes
varied widely between relations (Table 12). Some rela-
tions ran in a few seconds, others did not terminate in
a day. AMIE, in contrast, found her rules in 6 seconds,
and AMIE+ in half that time.

Results. We compared the output of ALEPH with
the positives-only evaluation function to the output
of AMIE(+) using the PCA confidence on the sam-
ple of YAGO2 used for the runtime experiments. Since
ALEPH required more than one day for some relations,
we used only rules for which the head relation runs
in less than one day. ALEPH mined 56 rules, while
AMIE(+) mined 302 rules. We ordered the rules by
decreasing score (ALEPH) and decreasing PCA confi-
dence (AMIE(+)). We computed the precision of the
rules by evaluating whether a prediction made by the
rule is correct or not (more on that metric in Section
7.5). Table 13 shows the number of predictions and their
total precision. We show the aggregated values at the
points where both approaches have produced around
3K, 5K, and 8K predictions. AMIE(+)’s PCA confi-
dence succeeds in sorting the rules roughly by descend-
ing precision, so that the initial rules have an extraordi-
nary precision compared to ALEPH’s. AMIE(+) needs
more rules to produce the same number of predictions
as ALEPH (but she also mines more).



Fast Rule Mining in Ontological Knowledge Bases with AMIE+

21

Top n Predictions  Precision
Positives-only 7 2997 27%
PCA Confidence 12 2629 62%
Positives-only 9 5031 26%
PCA Confidence 22 4512 46%
Positives-only 17 8457 30%
PCA Confidence 23 13927 43%

Table 13: PCA confidence vs. positives-only score: ag-
gregated precision of rules mined on YAGO2 sample.

We suspect that ALEPH’s positives-only evalua-

tion function manages to filter out overly general rules
only to some extent. The reason is that this measure
“guesses” negative examples at random, whereas rules
usually create false predictions in a non-random way.
Even if a rule produces many false predictions, the in-
tersection of these false predictions and the random
counterexamples may be very small. Consider for ex-
ample the rule bornIn(z,y) = diedIn(x,y), which pro-
duces false predictions for example for persons who have
moved to a different place during their life. By creating
negative examples just by considering random person-
location pairs, we might not produce any case for which
the rule will give a false prediction, simply because such
a negative example will have a relatively small proba-
bility to be generated.
Summary. Our experimental results show that AMIE
(and in particular AMIE+) can be up to 3 orders of
magnitude faster than other state-of-the-art systems,
namely WARMR [17] and ALEPH [31]. The PCA con-
fidence was shown to rank productive and correct rules
higher than other confidence metrics.

7.4 Evaluation of the PCA

The Partial Completeness Assumption (PCA) says that
if, for a given subject s and a given relation r, the KB
knows one object o with 7(s,0), then the KB knows
all objects o’ with r(s,0") (Sec. 4). The original AMIE
paper used the PCA but it did not evaluate whether this
assumption is true or not [16]. Since the PCA is one of
the basic ingredients of AMIE(+)’s mining model, we
wanted to know to what extent this assumption holds
in a real-world KB.
Setup. We looked into each of the 31 relations between
entities in YAGO2. For each relation r, we randomly
sampled 30 subjects. For each subject x, we checked
whether the KB knows all y with r(z,y). If the relation
is more inverse functional than functional (ifun(r) >
fun(r), see Section 3.2), we considered r ! instead.
As a ground truth, we took the Wikipedia page of
x and what we could find on the Web by a search

engine. It is obvious that such an evaluation cannot
be done strictly quantitatively. For example, a person
might have worked for a company, but this fact might
appear nowhere on Wikipedia — or even on the Web. Or
a musician might play 10 instruments at different levels
of proficiency, but Wikipedia mentions only the 4 main
instruments. Even a search on the Web might not tell us
that there are more than 4 instruments. Therefore, we
resorted to a qualitative analysis. We analyzed each of
the relations manually, and grouped the relations into
categories. Some relations fall into multiple categories.
Table 8 shows, for each relation, the percentage of sub-
jects in our sample for which the PCA holds.
Functions and Quasi-Functions. By definition, the
PCA holds for functions. Our manual analysis, how-
ever, did not result in 100% precision for functional
relations in Table 8. This is because our analysis also
counts the cases where the KB contains bugs. If, for
instance, YAGO knows the wrong place of death of a
person, then there exists another value outside YAGO
that is the right value. However the PCA would reject
it. Hence, we count this case as a miss.

The PCA extends well to relations that are strictly
speaking not functions, but that have a high functional-
ity. These are relations that usually have one object per
subject, even though there could be several objects. For
example, a person can graduate from several universi-
ties, but most people graduate from a single univer-
sity. We call these relations quasi-functions. The PCA
worked very well also on these, and predicted complete-
ness correctly for 73% — 100% of the subjects under
investigation. Since the PCA takes into account the di-
rection of the functionality, the PCA also holds for quasi
inverse-functional relations such as directed.
Granularity Differences. Some relations, such as lo-
catedIn and livesIn, hold between an entity and a geo-
graphical region. In that case, the region can be given
at the granularity of a city, a region, a country, or a
continent. Naturally, if YAGO contains one of these,
the others are possible options. Hence, PCA fails and
we found rather low precision values. However, these
cases could be addressed if one restricts the range of the
relation (say, to cities). With such a restriction, the re-
lations become functions or quasi-functions, which lifts
them into the category where the PCA works well. As
we will see in Section 7.5, the use of types can signifi-
cantly improve the performance of AMIE.

Implicit Assumptions. Some statements can be in-
ferred from the Wikipedia page even if the page does
not mention them. People usually do not state infor-
mation that can easily be inferred by what they have
stated before (following Grice’s Maxim of quantity and
manner [18]). For example, if someone graduated from a
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university, people usually do not feel obliged to mention
that this person used to live in the country in which the
university is located, because this can easily be inferred
by the reader. Only less obvious residences will be ex-
plicitly mentioned. Therefore, the PCA does not always
hold. Note that rules such as graduatedFrom(z,y) =
livesIn(z,y) can only be mined if Grice’s maxims are
occasionally violated by the authors of the articles. If
the authors always follow the maxims, then such rules
cannot be mined, because there are not even positive
examples for which the rule holds (lack of support). In
the case of YAGO, the only relation that we found in
this category is livesIn.
Source Incompleteness. For many relations, the
source itself (Wikipedia) is incomplete. Usually, these
relations have, for each subject, some objects that are
undisputed. For example, it is undisputed that Albert
Einstein is interested in physics. However, these rela-
tions also have objects that are less important, dis-
puted, or unknown. For example, Albert Einstein might
also be interested in music (he played the violin), but
maybe also in pancakes. These less prominent objects
are a lot less likely to appear in Wikipedia, or indeed
on any Web page. Even if they do, we can never be sure
whether there is not still something else that Einstein
was interested in. For these relations, the knowledge
sources are often incomplete by nature. For example,
not every single product that a country imports and ex-
ports is explicitly mentioned. Whether or not this poses
a problem depends on the application. If ground truth is
defined as what is universally true, then source incom-
pleteness is a problem. If ground truth is the source
of the KB (i.e., Wikipedia in this case), then source
incompleteness is not an issue.
Extraction Incompleteness. For a large number of
relations, the Wikipedia page contains more objects for
a given subject than the KB. These are cases where
the extraction process was incomplete. In the case of
YAGO, this is due to a strong focus on accuracy, which
causes the extraction to discard any extracted fact that
cannot be type checked or linked to an entity. This class
of relations is the most sensitive category for the PCA.
The success of the PCA will depend on how many re-
lations and to what extent they are affected by incom-
plete extractions.
Discussion. In summary, our analysis shows that it
depends on the nature of the relation and on its type
signature whether the PCA holds or not. There is a
large number of relations for which the PCA is reason-
able. These are not just functions and inverse functions,
but also relations that exhibit a similar behavior.

For many other cases, the PCA does not hold. In
these cases, AMIE(+) will falsely assume that a rule is

making incorrect predictions — although, in reality, the
predictions might be correct. Thus, when the PCA does
not hold, AMIE(+) will err on the side of caution.

At the same time, the PCA is not as restrictive as
the closed world assumption (CWA): the PCA admits
that there can be facts that are true, but not known
to the KB. For example, if a person has a birth date,
then both the CWA and PCA would not admit another
birth date. However, if a person does not have a birth
date, then the PCA will admit that there can be a birth
date, while the CWA will assume that there cannot be
a birth date. Thus, the PCA is more permissive than
the CWA. This encourages us to use the PCA for the
definition of our confidence. In the following, we will
show that this definition of confidence produces more
predictive and more accurate rules than the standard
confidence, which is based on the CWA.

7.5 Predicting Facts

Prediction. One of the applications of the mined rules
could be to predict new facts. Based on what the KB
knows, one aims to predict what else might be the case
in the real world. This is a difficult endeavor: It amounts
to guessing the places of residence for people, their birth
place, or even their death place. Naturally, we may not
assume a high precision in the prediction of the future.
We may only expect educated guesses.

To evaluate the precision of these guesses, we pro-
ceeded as follows: We ran our system with the de-
fault setting on the YAGO2 dataset. For each rule,
we evaluated whether the predictions that go beyond
YAGO2 were true. We did this by either checking
whether the prediction appears in a newer version of
the KB (YAGO2s), or by manually checking them in
Wikipedia. If we could find the predicted fact in nei-
ther, we evaluated it as false.

Standard vs. PCA Confidence. Our first goal is to
see whether the PCA confidence or the standard con-
fidence perform better in this task. Since both AMIE
and AMIE+ can work with both confidence metrics,
and since their output is the same, we report here our
results from [16] with AMIE. We ran AMIE, and sorted
the resulting rules first by descending PCA confidence,
and then by descending standard confidence. We looked
at the top ranked rules in each case, and evaluated the
precision of the predictions. The bottom curves of Fig-
ure 2 plot the aggregated predictions versus the aggre-
gated precision for the standard and the PCA confi-
dence. The n-th dot from the left represents the total
number of unique predictions and the total precision
of these predictions, aggregated over the first n rules.
As we see, ranking the rules by standard confidence is
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Fig. 2: Std. confidence vs. PCA confidence

a very conservative approach: It identifies rules with
reasonable precision, but these do not produce many
predictions. Going down in the list of ranked rules, the
rules produce more predictions — but at lower preci-
sion. The top 30 rules produce 113K predictions at an
aggregated precision of 34%. In contrast, if we rank the
rules by PCA confidence, we quickly get large num-
bers of predictions. The top 10 rules already produce
135K predictions — at a precision of 45%. The top 30
rules produce 3 times more predictions than the top 30
rules by standard confidence — at comparable precision.
This is because the PCA confidence is less conservative
than the standard confidence. We thus conclude that
the PCA confidence is better suited for making pre-
dictions than the standard confidence. We show in [16]
that the PCA confidence also correlates better with the
actual precision of a rule.

Using Type Information. The previous experiment
showed us the precision of individual rules for pre-
diction. To make more accurate predictions, we have
to combine these rules with more signals. We proceed
as follows. In Section 7.4 we discussed the granular-
ity differences in relations. For instance, the relation
livesIn is used to express a person’s city or country
of residence. This implies that, for example, the rule
livesIn(xz,y) = isCitizenOf(x,y) can predict that
some people are citizens of cities. Such spurious pre-
dictions decrease the precision of the inference process.
Therefore, we configured AMIE+ to mine typed rules.
These have the form:

BA rdf:type(xz, D) A rdf:type(y, R) = r(z,y)

where D and R correspond to the domain and range
of the head relation r in YAGO3.6 To allow AMIE+ to
find such rules, we augmented the YAGO2 dataset by
adding the rdf:type statements about the subjects and
objects of the triples.

Joint Prediction. Our second observation is that the
same prediction can be fired from multiple rules. If we
consider rules as signals of evidence, then facts pre-
dicted by more rules should get a higher confidence
score. In YAGO2, 9% of the predictions are fired by
more than one rule (with a PCA confidence thresh-
old of 0.1). To take this into account, we changed the
way predictions are ranked. In the original experimen-
tal setup, if multiple rules Ry, ... Ry made a prediction
p, the prediction was only counted the first time it was
fired. Since the rules were ranked by decreasing PCA
confidence, this was equivalent to ranking the predic-
tions according to their highest PCA confidence:

score(p) = maz{confpca(R1), ..., confpca(RE)}

We propose an alternative score instead:

k

score®(p) :=1— H (1 —confpea(Rs)) (8)

i=1

Equation 8 aggregates the PCA confidence of the rules
so that the predictions concluded by multiple rules are
ranked higher. It also confers a probabilistic interpre-
tation to the PCA confidence. The score of a predic-
tion is the probability that at least one of the rules in
R, ... Ry concludes p. This is computed as 1 minus
the probability that none of the rules concludes p. The
probability of a rule not concluding p is defined as 1
minus the PCA confidence of the rule. The probabil-
ity that none of the rules concludes p is the product
of the individual probabilities. Although this scoring-
scheme is very simplistic (it assumes independence of
the rules, and confers a probabilistic interpretation to
the confidence), it can still serve as a proof of concept.
In real applications, more involved methods [32,36] can
be used for joint prediction.

Results. The upper curve in Figure 2 shows the preci-
sion of the predictions made with both heuristics. We
proceeded as in the previous experiment, that is, we
first used the rules to fire predictions, and then we
ranked these predictions by descending score and com-
puted their cumulative precision. Unlike in the original
experimental setup, the n-th point from the left in the
new curve corresponds to the cumulative precision of

6 We used the YAGO3 [27] types because the type signa-
tures in older versions of YAGO were too general. E.g., the
relation livesIn is defined from person to location in YAGO2s,
whereas in YAGO3 it is defined from person to city.
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the predictions up to the n-th bucket. We bucketized
the predictions by score using a bucket size of 0.1, i.e.,
the first point corresponds to the predictions with score
between 1 and 0.9, the next one accounts for the pre-
dictions with score between 0.9 and 0.8 and so on.

As we can observe, our heuristics have a significant
effect on the precision of the predictions. The preci-
sion is much higher at each level of recall, compared to
the original experiment. We can make 100,000 predic-
tions at a precision of 70%. At 400K predictions, we
still achieve a precision of 60%. While these predictions
should not be added directly to a KB, they could be
sent to human evaluators to check their correctness. It
is much easier for a person to check fact candidates for
their correctness than to invent them from scratch. In
addition, this experimental setup can serve as a baseline
for more sophisticated inference approaches.

8 Conclusion

In this paper, we have presented AMIE, an approach
to mine Horn rules on large RDF knowledge bases.
AMIE is based on a formal model for rule mining un-
der the Open World Assumption, a method to simulate
counter-examples, and a scalable mining algorithm. In
contrast to state-of-the-art approaches, AMIE requires
no input other than the KB and does not need config-
urations or parameter tuning.

We have extended AMIE to AMIE+ by a series of
pruning and query rewriting techniques, both lossless
and approximate. As our extensive experiments have
shown, AMIE+ runs on millions of facts in only a few
minutes and outperforms state-of-the-art approaches
not only in terms of runtime, but also in terms of the
number and quality of the output rules. If we combine
these rules with simple heuristics for type checking and
joint prediction, we can use them to predict facts with
a precision of about 70%.

For future work, we aim to develop better joint in-
ference approaches based on the rules mined by AMIE.
We also aim to extend the set of rules beyond the lan-
guage of closed Horn rules, so that even more facts can
be predicted.
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