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Abstract. Knowledge graphs (KGs) are key tools in many AI-related
tasks such as reasoning or question answering. This has, in turn, pro-
pelled research in link prediction in KGs, the task of predicting missing
relationships from the available knowledge. Solutions based on KG em-
beddings have shown promising results in this matter. On the downside,
these approaches are usually unable to explain their predictions. While
some works have proposed to compute post-hoc rule explanations for
embedding-based link predictors, these efforts have mostly resorted to
rules with unbounded atoms, e.g., bornIn(x, y)⇒ residence(x, y), learned
on a global scope, i.e., the entire KG. None of these works has considered
the impact of rules with bounded atoms such as nationality(x,England)⇒
speaks(x,English), or the impact of learning from regions of the KG, i.e.,
local scopes. We therefore study the effects of these factors on the qual-
ity of rule-based explanations for embedding-based link predictors. Our
results suggest that more specific rules and local scopes can improve the
accuracy of the explanations. Moreover, these rules can provide further
insights about the inner-workings of KG embeddings for link prediction.
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1 Introduction

The continuous advances in information extraction on the Web have given rise to
large repositories of machine-friendly statements modeled as knowledge graphs
(KGs). These are collections of facts of the form p(s, o) that describe real-world
entities, e.g., capital(Italy,Rome). In this formalism, the predicate p in a state-
ment p(s, o) can be seen as a directed labeled edge that connects the subject s
to the object o. KGs allow computers to “understand” the real world, and find
applications in multiple AI-related tasks such as entity-centric IR, reasoning,
question answering, smart assistants, etc. Since KGs usually suffer from incom-
pleteness, a central task in KGs is link prediction, where the goal is to infer new
facts from the available knowledge. Link prediction constitutes a fundamental
step towards proper knowledge graph completion.

Approaches for link prediction in KGs abound and fall mainly into two
paradigms. On the one hand, symbolic methods [11, 12, 16, 19] mine explicit
patterns on the graph, e.g., the rule capital(x, y) ⇒ inCountry(y, x), and use
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those patterns to infer new relationships between entities. On the other hand,
approaches based on latent factors [4, 21, 22, 29, 31, 34] embed predicates p and
entities s, o in a latent space driven by a score function that ranks true facts bet-
ter than false ones. For example, TransE [4] learns d-dimensional embeddings (in
bold) for predicates and entities such that s + p ≈ o, if p(s, o) holds in reality.
TransE’s score function for facts is then −‖s + p− o‖l (l = {1, 2}).

Embedding-based methods have exhibited promising performance for link
prediction, however their main downside is that they operate as black boxes:
one cannot obtain an explanation of the logic behind a predicted fact p(s, o)
from the latent representations of s, p, and o. This has therefore motivated some
works on mining rule-based explanations for KG embeddings [7,9,26,27]. Those
explanations can help us, for instance, verify if the embeddings meet expected
reasoning guarantees such as transitivity, i.e., p(x, z)∧p(z, y)⇒ p(x, y), or detect
biases in the data. It is known that redundancy in the form of inverse pred-
icates, e.g., hyponym(feline, cat), hypernym(cat, feline) in benchmark datasets,
led to over-estimated accuracies for state-of-the-art embedding-based link pre-
dictors [3, 18]. Had a mechanism to understand that the embeddings mainly
captured patterns such as hyponym(x, y)⇒ hypernym(y, x), this issue could have
been detected in advance.

A limitation of existing explanations for KG embeddings is that they only
capture global inference patterns. This is tantamount to mining explanations in
the language of unbounded atoms, i.e., rules with no constants in the arguments
such as bornIn(x, z) ∧ officialLang(z, y) ⇒ speaks(x, y), that hold globally, that
is, on the entire KG. However, such rules cannot express specific entity asso-
ciations such as nationality(x,USA) ⇒ speaks(x,English), presumably captured
by link predictors. On those grounds, Section 4 addresses the following research
question (RQ1): what is the impact of specific rules in the quality of
the explanations for embedding-based predictors?. Moreover, and in line
with existing works in interpretable AI [23,24], we also study a second research
question (RQ2): how does learning explanation rules on specific regions
of the KG, i.e., local explanations, impact the quality of the resulting
rules?. Before answering these questions, we discuss basic concepts and related
work in Section 2, and explain how to compute rule-based explanations for link
predictors in Section 3.

2 Preliminaries

2.1 Background Concepts

Knowledge Graphs. A knowledge graph K = (V, E , lv, le) is a directed
labeled graph with sets of vertices V and edges E , where the injective functions
lv : V → I, le : E → P assign labels to the vertices and edges. The sets I and
P contain entity and predicate labels. An edge labeled capital departing from
a vertex labeled France to a vertex labeled Paris denotes the statement or fact
capital(France,Paris). Hence, a KG K ⊂ I × P × I is also a set of facts p(s, o)
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with subject s, predicate p, and object o. Usually, standard KGs store only facts
believed to be true.

We define the potential set Ω(K) of a KG as the universe of facts that could
be constructed from the entities and predicates in K. More formally, Ω(K) =
Dv(K)×De(K)×Dv(K) where

Dv(K) = {lv(v) : v ∈ V}, De(K) = {le(e) : e ∈ E}

are the entity and predicate domains of K. Furthermore, we define the potential
set of a predicate p as Ω(K) ⊇ Ωp(K) = {p(s, o) : (s, o) ∈ Dp(K)× D̄p(K)} with

Dp(K) = {s : ∃o : p(s, o) ∈ K}, D̄p(K) = {o : ∃s : p(s, o) ∈ K}.

Ωp(K) therefore defines the set of all possible facts that could be constructed
with the known subjects and objects of predicate p.

Horn rules. An atom A is a statement with constant predicate such that its
subject and object arguments can be variables v ∈ V with V ∩ I = ∅. If A
has only variable arguments, we say A is unbounded, otherwise it is bounded.
A Horn rule R is a statement of the form B ⇒ H where the body B is a
conjunction of atoms

∧
1≤i≤nAi, and H is the head atom. For instance, the

rule parent(x, z) ∧ nationality(z, y) ⇒ nationality(x, y) states that parents and
children have the same nationality. These rules usually come with scores that
quantify their precision. It is common to require atoms in rules to have at
least one variable, be transitively connected, and form safe rules, that is, en-
sure that the head variables occur also in the body. This condition guaran-
tees that the head variables are universally quantified, allowing for concrete
predictions via substitutions. A substitution σ : V → I is a partial mapping
from variables to constants, such that its application to atoms or rules replaces
each variable with its corresponding constant in the mapping. For example,
applying the substitution σ = {x → Marie Curie, y → France} to the atom
A : nationality(x, y), gives a new atom σ(A) : nationality(Marie Curie,France).
We say a rule R : B ⇒ H predicts a fact A′ in a KG K, denoted by R∧K ` A′,
iff ∃ σ : (∀B ∈ B : σ(B) ∈ K)∧ σ(H) = A′. Put differently a rule predicts a fact
A′ if there exist a substitution σ that (i) maps each atom in the rule’s body to a
known KG fact, and (ii) maps the head atom to A′. If R predicts a statement A′
and A′ ∈ K, we say that R predicts A′ correctly, i.e., the prediction is a known
fact, and we use the notation R ∧ K � A′.

Link Predictors. A link predictor f : Ω(K) → R is a function that scores
the facts in the potential set of a KG, usually assigning higher values to true
facts. Link predictors are mostly used to answer queries of the forms p(s, ?) or
p(?, o), in other words, queries that ask for the most likely subject or object of
a statement given the other two components. Embedding-based link predictors
operate on latent representations for entities, predicates, and facts in Ω(K).
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Hence, they actually have the form f = f̂ ◦ h, where f̂ : Ck → R1 is a function
defined on a k-dimensional representation for facts, and h : Ω(K) → Ck maps
facts to k-dimensional vectors. If the semantics of the vector components are not
understandable to humans, we say that f is a black box. That is the case for
pure embedding-based link predictors such as TransE [4] or ComplEx [31].

Explanations. An explanation E = 〈R, g〉 for a black-box link predictor f :
Ω(K) → R consists of a set R of Horn rules and a function g : R → R that
attributes higher scores to rules that “agree” with f . A rule R : B ⇒ H agrees
with f , if R predicts a fact A ∈ Ω(K) also predicted by f . This definition assumes
the existence of a threshold θ such that f(A) ≥ θ is interpreted as the black box
also “thinking” that A is true. Explanations can be of different scope, namely
global when they are learned on the potential set Ωp(K) of a predicate p, or local
when they are learned on smaller regions of Ωp(K) as explained in Section 3.

2.2 Related Work

Link Prediction. This problem has received a lot of attention in the last 10
years with approaches lying on a spectrum from symbolic methods to embedding-
based techniques. We refer the reader to [14] for a comprehensive survey. Sym-
bolic techniques learn explicit patterns, e.g., arbitrary subgraphs, paths, associa-
tion rules, Horn rules, etc., from KGs and use those patterns as features to predict
missing links between entities [11, 12, 16, 19]. In contrast, the common principle
of embedding-based methods is to model entities and predicates as elements in
a latent space, where predicates characterize interactions between entity embed-
dings. Those interactions are modeled as geometrical operations, e.g., translation
in TransE [4] where s + p ≈ o for true facts p(s, o) (s,p,o ∈ Rd), or rotation
in RotatE [30]. More recent methods resort to neural architectures [20, 28] that
exploit the vicinity of entities in the graph to learn proper latent representations
for both entities and predicates.

In all cases, a scoring function – implemented by minimizing a loss function –
guides the training of the embeddings, which are learned to yield high scores for
true facts and low scores for false facts. The latter are obtained by corrupting
the true facts in the KG – a task of utter importance for the quality of the
embeddings [13,36].

Other methods combine the strengths of symbolic patterns and embeddings [6].
In [17], the authors improve the accuracy of different state-of-the-art embedding-
based link predictors by removing those predictions that are not backed up by
any of the Horn rules learned on the data. This strategy is complemented with
a combined ranking that takes into account the individual rankings given by
the rules and the embeddings. Some approaches [1,13,35] propose iterative algo-
rithms that use rules and embeddings to produce better examples for subsequent

1 Most methods embed the entities in real spaces, i.e., in Rk, but a few, e.g., [31] resort
to vectors of complex numbers in Ck.
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training. In contrast, other methods [10, 25] instruct the embeddings to comply
to explicit reasoning patterns, e.g., transitivity, p(x, z) ∧ p(z, y)⇒ p(x, y).

Explaining the Black Box. Unlike symbolic approaches, link predictors
based on embeddings are black boxes. Hence, there have been some efforts to
explain their logic by mining explicit patterns [7,26,27] with attribution scores.
Among these patterns, Horn rules are the most expressive. The rules are ex-
tracted using state-of-the-art rule or path mining algorithms [2,8,15,16], whereas
the attribution scores are learned via machine learning, e.g., linear or logistic re-
gression in the spirit of standard explanation techniques such as LIME [24].
Nevertheless, none of these approaches exploits the power of Horn rules at
its best. For instance, [7, 27] mine rule explanations of up to two atoms, e.g.,
bornIn(x, y) ⇒ livesIn(x, y), whereas DistMult [34] can only learn pure paths
such as bornIn(x, z) ∧ inCountry(z, y) ⇒ nationality(x, y). Hence, none of these
methods can induce explanations in the language of bounded atoms such as
nationality(x,UK) ⇒ speaks(x,English). Furthermore, all these endeavors mine
global explanations. Embedding-based models can, though, be very complex and
therefore hard to approximate in the general sense. Thus we explore the effects
of bounded atoms and locality in the quality of the explanations.

3 Explaining KG Embeddings for Link Prediction

Algorithm 1 describes a generic procedure to compute rule-based explanations
for a black-box link predictor f trained on a KG K, containing both true (K+)
and corrupted facts (K−), in line with existing approaches [7, 26, 27]. The rules
are learned on a context C consisting of facts of a given predicate p. We elaborate
on the stages of the algorithm and the different ways to define the context C.

Algorithm 1: Build Explanation
Input: link predictor f : Ω(K)→ R trained on K = K+ ∪ K−, context

C ⊂ Ωp(K), C ∩ K = ∅
Output: an explanation E = 〈R, g〉 with set of rules R, g : R→ R

1 K̂ := ∅
2 foreach A := p(s, o) ∈ C do
3 if f(A) ≥ θ then
4 K̂ := K̂ ∪ {pf (s, o)}
5 else
6 K̂ := K̂ ∪ {¬pf (s, o)}

7 R := rule mining on K ∪ K̂ for predicates pf ,¬pf

8 return build-rule-based-surrogate(R,K, K̂, f )
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Binarizing the black box. To learn Horn rules that mimic a black box f , we
need to convert f ’s scores for facts into true or false verdicts. To this end, lines
2–6 label each fact in the context C by computing f ’s score and then applying
a threshold to decide whether the fact is deemed true or not by f . This set K̂ of
annotated facts is represented by the surrogate predicates pf , ¬pf .

Rule Mining. Line 7 in Alg. 1 learns Horn rules of the forms B ⇒ pf (s, o) and
B ⇒ ¬pf (s, o) with confidence scores from the original KG K and the black-box
annotated context K̂.

Learning the explanation. Finally, line 8 uses the rules as features to learn
a surrogate model fs : R|R| → R that mimics the binarized f and provides
importance scores for the rules in R. Given a statement A = p̄f (s, o) ∈ K̂ with
p̄f ∈ {pf ,¬pf}, we encode A as a vector xA ∈ R|R| such that its i-th entry is
set as follows:

xA[i] =


sgn(A)× conf (Ri) Ri ∧ (K ∪ K̂) � A

−sgn(A)× conf (Ri) Ri ∧ (K ∪ K̂) ` A′ with A′ 6= A

0 otherwise

Here sgn(A) = 1 if A = p̄f (s, o), otherwise sgn(A) = −1. If a rule Ri ∈ R pre-
dicts correctly a statement A ∈ K̂, the i-th component of xA holds a value equals
the confidence of Ri (reported by the rule mining phase) with the same polarity
of f ’s prediction. In that case, Ri agrees with f and is a potential explanation
for f ’s answer on A. If Ri is a potential explanation for some other fact A′, we
change the sign of confidence value. In any other case, we assign a score of 0 to
the entry. We use the xA vectors and the binarized labels – given by sgn(A) –
to train a surrogate logistic regression classifier fs, whose coefficients define an
attribution mapping g : R → R for rules – our explanation. The surrogate fs can
provide both binary labels and probability scores for facts, and its coefficients
can be used to rank the rules predicting true and false verdicts pf (s, o),¬pf (s, o).

Explanation Context. Existing explanation approaches for KG embeddings [26,
27] mine global explanations, where the context C given as input to Alg. 1 con-
tains a large sample of true and false statements. The latter are obtained by cor-
rupting the true facts, so that for each fact p(s, o) we also add {p(s′, o), p(s, o′)}
(s 6= s′, o 6= o′). The resulting surrogate fs approximates f ’s general logic when
predicting p-labeled links.

A drawback of explanations based on global surrogates is that they assume
that rules have always the same importance for all p-labeled predictions. Such
a simplistic assumption can make explanation mining uninformative, if for ex-
ample, the black box has a fine-grained behavior, i.e., it implements different
logics for different regions of the KG. On those grounds, we propose to mine
explanations within a local scope obtained by calling Alg. 1 on different sub-
contexts C ′ ⊆ C with triples that are close to each other in the latent space.
These sub-contexts are obtained by applying clustering on s ⊕ o, i.e., on the
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latent representation of pairs s, o for true facts p(s, o) ∈ C2. We can also define
per-instance contexts around a target fact A = p(s, o) by calling Alg. 1 on a
sub-context C ′ = {A′ = p(s′, o) : A′ ∈ C} ∪ {A′ = p(s, o′) : A′ ∈ C} ∪ {A}, that
is, on statements that share at least one argument with A.

4 Evaluation

To answer our research questions, we study the impact of bounded atoms (RQ1)
and locality (RQ2) on the fidelity of rule explanations for embedding-based link
predictors through a quantitative and an anecdotal evaluation.

4.1 Experimental Setup

Datasets and Link Predictors. We resort to the benchmark datasets fb15k-237,
wn18rr, and yago3-10, on which we trained the bilinear methods ComplEx [31]
and HolE [21], and the translational approach TransE [4]. We used the imple-
mentations and data offered by the Torch-KGE library [5].

Rule Mining. We mine Horn rules with AMIE [15], a state-of-the-art rule
miner for large KGs. By default, AMIE mines closed Horn rules3 of up to 3
unbounded atoms, but it can be instructed to allow bounded atoms. AMIE
does not support explicit counter-examples to estimate the precision of rules, as
required by Alg. 1, hence we extended the system to support explicit false facts
in the precision computation. These counter-examples were generated through a
variant of Bernoulli sampling that accounts for predicate domains [33]. We use
all rules making at least 2 correct predictions with a precision of at least 10% to
learn the surrogate model (see Section 3).

Explanations. We compute rule-based explanations for the studied link predic-
tors using the test instances of the experimental datasets to construct contexts
C of different scopes, i.e., global, local, and per-instance as explained in Sec. 3.
For each call to Alg. 1, we split C into train and test sets Ctrain and Ctest (30%),
so that we learn the explanations on Ctrain and evaluate them on Ctest . Link
predictors are mainly used for two tasks: fact classification (true vs. false) and
subject/object prediction for queries p(?, o) and p(s, ?) where potential candi-
dates are ranked by their score. We quantify the fidelity of our surrogate models
(their ability to approximate the link predictors) for these two tasks via standard
metrics, namely the ROC-AUC score and the mean reciprocal rank (MRR). The
threshold θ to binarize f ’s scores (line 6 in Alg. 1) is chosen via logistic regression.

4.2 Results

Quantitative Evaluation. Tables 1 and 2 report the average ROC-AUC and
MRR for the different explanation setups, namely unbounded vs. bounded rules
2 ⊕ denotes concatenation; sub-contexts are corrupted to obtain counter-examples.
3 These are safe rules where each variable occurs in at least 2 atoms
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ROC-AUC S-MRR O-MRR

Unbounded Bounded Unbounded Bounded Unbounded Bounded

B L PI G L PI B L PI G L PI B L PI G L PI

complex 0.71 0.68 0.64 0.93 0.93 0.95 0.13 0.16 0.19 0.31 0.35 0.44 0.97 1.00 0.97 0.97 0.98 0.93
transe 0.72 0.70 0.64 0.95 0.92 0.95 0.12 0.20 0.19 0.22 0.47 0.45 0.97 0.99 0.98 0.98 0.93 0.91
hole 0.66 0.63 0.60 0.98 0.99 0.99 0.08 0.16 0.22 0.27 0.36 0.50 0.98 0.98 0.97 0.98 1.00 0.97

Table 1: Fidelity on fb15k-237. Best performances are in bold; best locality
results are underlined. The baseline B are global explanations with unbounded
atoms. G, PI, and L stand for global, per-instance, and local explanations.

ROC-AUC S-MRR O-MRR

G L PI G L PI G L PI

complex 0.55 0.64 0.68 0.93 0.60 0.38 0.92 0.93 1.00
transe 0.51 0.55 0.69 0.71 0.87 0.32 0.93 0.92 1.00
hole – 0.65 0.73 – 0.42 0.38 – 1.00 1.00

(a) wn18RR

ROC-AUC S-MRR O-MRR

G L PI G L PI G L PI

0.55 0.75 0.00 0.94 0.39 0.17 0.87 1.00 1.00
0.66 0.63 0.63 0.73 0.50 0.50 0.94 0.97 1.00
0.71 0.81 0.65 0.90 0.38 0.26 0.93 1.00 0.99

(b) yago3-10

Table 2: Fidelity of rule-based explanations with bounded atoms.

learned on global (G), local (L), and per-instance (PI) scopes. The scores are
computed by averaging the fidelity obtained for each call to Alg. 1 weighted by
the size of the corresponding test set, i.e., |Ctest |. We disaggregate the MRR into
S-MRR and O-MRR – when the task is to predict the subject or object given
the other two components.

Our baseline setting (denoted by B) are global unbounded rules as mined by
existing approaches [7,26,27]. We highlight that we could not mine explanations
with such a setting for wn18RR and yago3-10 on any of the studied link predic-
tors – not even for local or per-instance scopes. This happens because unbounded
rules can only be extracted when the training KG contains very prevalent and
general regularities in the interactions between the predicates. The datasets
wn18RR and yago3-10, however, have much fewer predicates than fb15k-237: 11
and 37 for the former versus 237 for the latter. Bounded atoms also increase the
coverage explanation for fb15k-237. While the baseline provides explanations
for 18 different predicates for ComplEx on fb15k-237, allowing bounded rules
increases the coverage to 58 predicates (HolE and TransE exhibit comparable
increases). Moreover the results in Table 1 suggest that bounded atoms in rules
generally increase fidelity.

It is important to remark that allowing constants in the rule atoms comes at
the expense of many more, potentially noisy, rules. On fb15k-237 with global
scopes, for example, the number of unique rules mined from TransE increases
from 1k to 193k. That said, only 134k of those rules get non-zero coefficients
during the attribution phase – implemented via logistic regression.
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We also observe that rule-based surrogates tend to be better at mimick-
ing the link predictors for object prediction. This is explained by the nature
of KG predicates, which are usually defined in a subject-oriented manner, e.g.,
nationality(J. Biden,USA) and not hasCitizen(USA, J. Biden). This makes sub-
ject prediction generally harder to mimic, because, e.g., it is easier to predict
the nationalities of J. Biden than to predict all USA citizens. Besides, this phe-
nomenon is corroborated by the actual performances of the link predictors. For
instance, ComplEx exhibits an average S-MRR of 0.29 on wn18RR, whereas the
average O-MRR reaches 0.46. That said, Table 2a suggests that S-MRR fidelity
can still be high even in the presence of subject-oriented predicates.

When we look at the effects of locality on fidelity, we notice mixed effects.
On fb15k-237, locality hurts ROC-AUC performance for unbounded rules and
brings moderate performance gains for the MRR. The situation is different for
bounded rules, for which locality boosts fidelity in most cases. These results
suggest that locality and bounded rules are complementary. A similar behavior
can also be observed for coverage. For example, local scopes combined with
bounded rules allow mining 507k unique rules (with non-zero attribution) for 130
different predicates for ComplEx on fb15k-237 vs. 112k rules/58 predicates and
1505 rules/62 predicates when only one of the features is enabled (the baseline
mines 730 predicates covering 18 predicates). For per-instance scopes we can
compute rule explanations for up to 2782 individual facts (out of 20k) covering
83 predicates (HolE on fb15k-237)

fb15k-237

(1) place_of_birth(x,Chicago)⇒ nationality(x,USA) [TransE]
(2) has_lived_in(x,Brooklyn)⇒ nationality(x,USA) [ComplEx]

(3) profession(x,Author)⇒ gender(x,M) [ComplEx]
(4) impersonates(z, x) ∧ gender(z, y)⇒ gender(x, y) [ComplEx, HolE]

(5) country(z, y) ∧ birth_place(x, z)⇒ nationality(x, y)
(6) company(z, x) ∧ athlete:sport(z, y)⇒ sport(x, y)◦ [HolE]

(7) fwc:club(z, x) ∧ sport(z, y)⇒ sport(x, y)◦ [HolE]

yago3-10

(8) affiliation(x,Umeå IK)⇒ gender(x,F)† [TransE, ComplEx]
(9) wonPrize(x,O. Orange-Nassau)⇒ wonPrize(x,D.S. Medal) [ComplEx]

wn18rr

(10) meronym_mb(Insecta, x)⇒ hypernym(x,Animal)† [ComplEx, HolE]
Table 3: Some rule explanations. ◦, † denote local and per-instance explanations.

Anecdotal Evaluation. Table 3 shows a few examples of rule-based expla-
nations for our experimental link predictors. These correspond to some of the
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best ranked rules according to the coefficients of the surrogate classifiers. The
rules illustrate regularities preserved by the link predictors, since the body of
the rules defines conditions satisfied by the facts of the KG, in contrast to the
head that matches statements predicted by our black boxes (see Alg 1). Rules
with bounded atoms offer legible insights about the information that the link
predictors may be capturing to make predictions.

A key observation is that the different link predictors do not seem to rely on
the same information – as suggested by rules (1) and (2) for ComplEx and TransE
on fb15k-237. This is supported by the fact that among the 47 predicates for
which ComplEx finds global explanations with bounded atoms, only 3 have com-
mon rules with TransE. We bring our attention to rule (3), which suggests that
embeddings do reproduce the biases in the source data4. Recall that fb15k-237
was mainly extracted from Wikipedia, known to have gender biases [32]. Those
biases are easier to spot with rules with bounded atoms, which are a complement
to more general explanations such as (4) and (5). We also highlight that local
contexts can illustrate the semantics captured by the embeddings. This is exem-
plified by rules (6) and (7) that were learned on the same predicate but on two
fact clusters. As we can see, our mining routine learned semantically equivalent
rules, defined on different thematic domains, namely athletes and fwc; the latter
refers to the 2010 FIFA World Cup.

5 Conclusion

We have studied the effects of specific rules with bounded atoms and local scopes
on the quality of explanations for embedding-based link predictors on knowledge
graphs. Our results suggest a rather positive impact on the explanation fidelity
and the coverage of the explanations. Moreover, specific rules and local scopes
exhibit a symbiotic relationship.

Even though rule-based explanations reflect regularities preserved by black-
box link predictors, they do not shed light on causality. In this line of though, we
envision to compute causal explanations that help us understand the role of the
different entities, predicates, and latent components of KG embeddings in the
resulting predictions. We have also planned to elaborate more on the relationship
between link prediction performance and explanation fidelity, in particular at the
level of the individual predicates. The source code and experimental data of our
work is available at https://gitlab.inria.fr/glatour/geebis.
Acknowledgment. This research was supported by TAILOR, a project funded
by EU Horizon 2020 research and innovation programme under GA No. 952215.

References

1. UniKER: A Unified Framework for Combining Embedding and Horn Rules for
Knowledge Graph Inference. In ICML Workshop on Graph Representation Learn-
ing and Beyond (GRL+), 2020.

4 Rule (8), on the other hand, refers to a women’s football team.

https://gitlab.inria.fr/glatour/geebis


Title Suppressed Due to Excessive Length 11

2. Naser Ahmadi, Viet-Phi Huynh, Vamsi Meduri, Stefano Ortona, and Paolo Pa-
potti. Mining Expressive Rules in Knowledge Graphs. Journal of Data and Infor-
mation Quality, 1(1), 2019.

3. Farahnaz Akrami, Mohammed Samiul Saeef, Qingheng Zhang, Wei Hu, and
Chengkai Li. Realistic Re-Evaluation of Knowledge Graph Completion Methods:
An Experimental Study. In ACM SIGMOD Conference, 2020.

4. Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. Translating Embeddings for Modeling Multi-relational Data. In
Advances in Neural Information Processing Systems 26. 2013.

5. Armand Boschin. TorchKGE: Knowledge Graph Embedding in Python and Py-
Torch. In International Workshop on Knowledge Graphs, 2020.

6. Armand Boschin, Nitisha Jain, Gurami Keretchashvili, and Fabian Suchanek.
Combining Embeddings and Rules for Fact Prediction. In Int. Research School
in AI in Bergen. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

7. Ivan Sanchez Carmona and Sebastian Riedel. Extracting Interpretable Models from
Matrix Factorization Models. In International Conference on Cognitive Computa-
tion, 2015.

8. Yang Chen, Daisy Zhe Wang, and Sean Goldberg. ScaLeKB: Scalable Learning
and Inference over Large Knowledge Bases. VLDB Journal, 25(6), 2016.

9. Mohamed H Gad-Elrab, Daria Stepanova, Trung-Kien Tran, Heike Adel, and Ger-
hard Weikum. ExCut: Explainable Embedding-Based Clustering over Knowledge
Graphs. In International Semantic Web Conference, 2020.

10. Shu Guo, Lin Li, Zhen Hui, Lingshuai Meng, Bingnan Ma, Wei Liu, Lihong Wang,
Haibin Zhai, and Hong Zhang. Knowledge Graph Embedding Preserving Soft
Logical Regularity. In International Conference on Knowledge Management, 2020.

11. Zhongni Hou, Xiaolong Jin, Zixuan Li, and Long Bai. Rule-Aware Reinforcement
Learning for Knowledge Graph Reasoning. In ACL/IJCNLP (Findings), 2021.

12. Zhongni Hou, Xiaolong Jin, Zixuan Li, and Long Bai. Rule-Aware Reinforcement
Learning for Knowledge Graph Reasoning. In ACL/IJCNLP (Findings), 2021.

13. Nitisha Jain, Trung-Kien Tran, Mohamed H. Gad-Elrab, and Daria Stepanova.
Improving Knowledge Graph Embeddings with Ontological Reasoning. In Inter-
national Semantic Web Conference, 2021.

14. Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S. Yu. A Sur-
vey on Knowledge Graphs: Representation, Acquisition, and Applications. IEEE
Transactions on Neural Networks and Learning Systems, 33(2), 2022.

15. Jonathan Lajus, Luis Galárraga, and Fabian Suchanek. Fast and Exact Rule Min-
ing with AMIE 3. In Extended Semantic Web Conference, 2020.

16. Ni Lao, Tom Mitchell, and William W. Cohen. Random Walk Inference and Learn-
ing in A Large Scale Knowledge Base. In Conference on Empirical Methods in
Natural Language Processing, 2011.

17. Christian Meilicke, Patrick Betz, and Heiner Stuckenschmidt. Why a Naive Way
to Combine Symbolic and Latent Knowledge Base Completion Works Surprisingly
Well. In 3rd Conference on Automated Knowledge Base Construction, 2021.

18. Christian Meilicke, Manuel Fink, Yanjie Wang, Daniel Ruffinelli, Rainer Gemulla,
and Heiner Stuckenschmidt. Fine-Grained Evaluation of Rule and Embedding-
Based Systems for Knowledge Graph Completion. In International Semantic Web
Conference, pages 3–20, 2018.

19. Changping Meng, Reynold Cheng, Silviu Maniu, Pierre Senellart, and Wangda
Zhang. Discovering Meta-Paths in Large Heterogeneous Information Networks. In
The Web Conference, 2015.



12 L. Galárraga

20. Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc Nguyen, and Dinh Phung. A
Novel Embedding Model for Knowledge Base Completion Based on Convolutional
Neural Network. In Conference of the North American Chapter of the Association
for Computational Linguistics, 2018.

21. Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. Holographic Embeddings
of Knowledge Graphs. In AAAI Conference on Artificial Intelligence, 2016.

22. Maximilian Nickel and Volker Tresp. Tensor Factorization for Multi-relational
Learning. In Machine Learning and Knowledge Discovery in Databases, 2013.

23. Georgina Peake and Jun Wang. Explanation Mining: Post Hoc Interpretability
of Latent Factor Models for Recommendation Systems. In ACM SIGKDD Int.
Conference on Knowledge Discovery and Data Mining, 2018.

24. Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should I trust you?:
Explaining the Predictions of any Classifier. In ACM SIGKDD Int. Conference on
Knowledge Discovery and Data Mining, 2016.

25. Tim Rocktäschel and Sebastian Riedel. End-to-end Differentiable Proving. In
Conference on Neural Information Processing Systems, 2017.

26. Andrey Ruschel, Arthur Colombini Gusmão, Gustavo Padilha Polleti, and
Fábio Gagliardi Cozman. Explaining Completions Produced by Embeddings of
Knowledge Graphs. In European Conf. on Symbolic and Quantitative Approaches
with Uncertainty, 2019.

27. Ivan Sanchez, Tim Rocktaschel, Sebastian Riedel, and Sameer Singh. Towards
Extracting Faithful and Descriptive Representations of Latent Variable Models. In
AAAI Spring Symposium on Knowledge Representation and Reasoning, 2015.

28. Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong He, and Bowen Zhou.
End-to-End Structure-Aware Convolutional Networks for Knowledge Base Com-
pletion. In AAAI Conference on Artificial Intelligence, 2019.

29. Richard Socher, Danqi Chen, Christopher D. Manning, and Andrew Y. Ng. Reason-
ing with Neural Tensor Networks for Knowledge Base Completion. In Conference
on Neural Information Processing Systems, 2013.

30. Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. RotatE: Knowledge
Graph Embedding by Relational Rotation in Complex Space. In International
Conference on Learning Representations, 2019.

31. Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. Complex Embeddings for Simple Link Prediction. In International
Conference on Machine Learning, 2016.

32. Claudia Wagner, Eduardo Graells-Garrido, David Garcia, and Filippo Menczer.
Women through the Glass Ceiling: Gender Asymmetries in Wikipedia. EPJ Data
Science, 5:1–24, 2016.

33. Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge Graph
Embedding by Translating on Hyperplanes. AAAI Conference on Artificial Intel-
ligence, 28(1), 2014.

34. Bishan Yang, Scott Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Em-
bedding Entities and Relations for Learning and Inference in Knowledge Bases. In
International Conference on Learning Representations, 2015.

35. Wen Zhang, Bibek Paudel, Liang Wang, Jiaoyan Chen, Hai Zhu, Wei Zhang, Abra-
ham Bernstein, and Huajun Chen. Iteratively Learning Embeddings and Rules for
Knowledge Graph Reasoning. In The Web Conference, 2019.

36. Yongqi Zhang, Quanming Yao, and Lei Chen. Efficient, Simple and Automated
Negative Sampling for Knowledge Graph Embedding, 2020.


	Effects of Locality and Rule Language on Explanations for Knowledge Graph Embeddings 

