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Abstract—In recent years, research in RDF archiving has
gained traction due to the ever-growing nature of semantic data
and the emergence of community-maintained knowledge bases.
Several solutions have been proposed to manage the history of
large RDF graphs, including approaches based on independent
copies, time-based indexes, and change-based schemes. In par-
ticular, aggregated changesets have been shown to be relatively
efficient at handling very large datasets. However, ingestion time
can still become prohibitive as the revision history increases. To
tackle this challenge, we propose a hybrid storage approach based
on aggregated changesets, snapshots, and multiple delta chains.
We evaluate different snapshot creation strategies on the BEAR
benchmark for RDF archives, and show that our techniques can
speed up ingestion time up to two orders of magnitude while
keeping competitive performance for version materialization and
delta queries. This allows us to support revision histories of
lengths that are beyond reach with existing approaches.

I. INTRODUCTION

The ever-growing nature of RDF data and the emergence of
large collaborative knowledge graphs have propelled research
in efficient techniques for RDF archiving [FUPK19], [PGH21],
which is the task of keeping track of an RDF graph’s change
history. RDF archiving is of great value to both maintainers
and consumers of RDF data. To the former, archives are the
basis of version control [ANR™19], which opens the door not
only to novel data processing tasks, e.g., mining of temporal
and correction patterns [PTBS19], but also to temporal data
analytics [RCS™15], [BrulO]. For data consumers, archives
are a way to query the past and study the evolution of a given
domain of knowledge [HBS13], [TS19], [AMH21].

From a technical point of view, building and maintaining
RDF archives is a very challenging endeavor, primarily due
to the massive size of current knowledge graphs. As of April
2022, DBpedia accounts for 220M entities and 1.45B facts!,
and changes from one release to the next one can be in the
order of millions [PGH21]. However, large changesets are not
the only issue that challenges state-of-the-art RDF archive
systems. For instance, DBpedia Live’ receives continuous
updates with changes made by the Wikipedia community. This
dynamicity makes DBpedia’s revision history extremely long,
and exacerbates the challenges of managing an archive for a
dataset of that nature. As shown in our experimental section,
existing approaches for RDF archiving cannot ingest long
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histories on large datasets, even when the changes between
revisions are small.

We therefore propose an approach to ingest, store, and
query long revision histories on very large RDF graphs.
Our techniques rely on a combination of dataset snap-
shots and sequences of aggregated changesets — called delta
chains [TSHT19] in the literature. We evaluate our approaches
on the BEAR benchmark [FUPK19] and show that our tech-
niques can ingest the BEAR-B instant dataset in no more
than 2 hours — something that so far has been beyond reach.
Moreover, our techniques exhibit competitive runtimes for
most types of queries on RDF archives. We implemented our
approach on top of OSTRICH [TSHT19], a state-of-the-art
engine for archiving large RDF graphs.

The remainder of this paper is structured as follows. Sec-
tion II elaborates on the background concepts and the state of
the art in RDF archiving. Our storage techniques are detailed
in Section III, while Section IV explains how to query archives
with multiple snapshots and delta chains. Section V provides
details of our implementation. The viability of our techniques
is evaluated in Section VI. Finally, Section VII concludes the
paper and discusses future work.

II. BACKGROUND AND RELATED WORK

A. RDF Graphs and RDF Archives

An RDF graph G (also called a knowledge graph) consists
of a set of triples ( s, p, o ) with subject s € ZU B, predicate
p € Z, and object o € ZU L U B, where 7 is a set of IRIs, £
is a set of literals, and B is a set of blank nodes [RS14]. RDF
graphs are queried using SPARQL [SH13], whose building
blocks are triple patterns, i.e., triples that allow variables
(prefixed with a ‘?”) in any position, e.g., { ?x, cityln, USA )
matches all American cities in G.

An RDF archive A is a temporally ordered collection
of RDF graphs that represents all the states of the graph
throughout its history of updates. This can be formalized as
A = {Gy,...,Gi}, with G; being the graph at version (or
revision) ¢ € Z>¢. The transition from G;_; to version Gj; is
implemented via an update operation G; = (G;_1 \u; )U ul'.",
where u;L and u; are disjoint sets of added and deleted
triples. We call the pair u; = (u;",u; ) a changeset or delta.
We can generalize changesets to any pair of versions, i.e.,
i j = (u;, u; ;) defines the changes between versions i and



j. When a triple ( s, p, o ) is present in a version i of the
archive, we write it as a quad ( s, p, 0, i ).

B. Querying RDF Archives

The literature identifies five types of queries over RDF
archives [FUPK19], [TSH'19]. We explain them next and
provide examples with a single triple pattern for simplicity.

o Version Materialization (VM). These are standard
SPARQL queries run against a single version i, e.g., (
?s, type, Country, 5 ) returns the countries present in
version ¢ = 5.

« Delta Materialization (DM). These are queries defined
on changesets u; ; = <u:j,u;j>, e.g., the query asking
for the countries added between versions ¢ = 3 and j = 5,
which implies to run ( ?s, type, Country ) on u}tg).

o Version Query (V). These are standard SPARQL queries
that provide results annotated with the versions where
those results hold. An example is { ?s, type, Country,
?v ), which returns pairs { country, version ).

o Cross-version (CV). CV queries combine results from
multiple versions, for example: which of the countries in
the latest version have diplomatic relationships with the
countries in revision 0?

e Cross-delta (CD). CD queries combine results from
multiple changesets, for example: in which versions were
the most countries added?

Both CV and CD queries build upon the other types of queries,
ie., V and DM queries. Therefore, full support for VM,
DM, and V queries suffices for applications relying on RDF
archives.

C. Solutions for RDF Archive Management

Several solutions have been proposed for managing the his-
tory of RDF graphs efficiently. We review the most prominent
approaches in this section and refer the reader to [PGH21] for
a detailed survey.

In the literature, RDF archive approaches are typically
categorized according to their storage architecture. We distin-
guish three major design paradigms: independent copies (IC),
change-based solutions (CB), and timestamp-based systems
(TB). IC approaches, such as [VWS'05], implement full
redundancy: all triples present in a version ¢ are stored as
an independent RDF graph G;. While IC approaches excel
at executing VM queries, they are impractical for today’s
knowledge graphs due to their prohibitive storage footprint.
This fact has shifted the research trend towards CB and
TB systems. In a CB solution, some versions are stored
as changesets (also called deltas) w.r.t. a previous reference
version stored as a snapshot. We call a sequence of changesets
— representing an arbitrary sequence of versions — and its cor-
responding reference revision, a delta chain. CB approaches
require less disk space than IC architectures and are optimal
for DM queries — at the expense of efficiency for VM queries.
This makes them particularly attractive for version-control
systems, e.g., [GHU14], [ANR'19], where changesets are
rather small and frequent. TB solutions, on the other hand,

optimize for V queries as they store temporal metadata, such
as validity intervals or insertion/deletion timestamps [NW10]
in specialized indexes.

Recent approaches borrow inspiration from more than one
paradigm. QuitStore [ANR™19], for instance, stores the data
in fragments, for which it implements a selective IC approach.
This means that only modified fragments generate new copies,
whereas the latest version is always materialized in main mem-
ory. OSTRICH [TSH™ 19] combines the advantages of CB and
TB approaches in a single delta chain; an initial snapshot
stores revision 0, whereas a new revision ¢ is built from a
changeset of the form w;_;; and stored as an aggregated
changeset ug ;, i.e. the changes between the snapshot to i.
This storage architecture is depicted in Figure 1la. OSTRICH
supports VM, DM, and V queries on single triple patterns
natively. CV, CD, and arbitrary SPARQL queries can be
executed by connecting OSTRICH to a query engine. Aggre-
gated changesets have been shown to speed up VM and DM
queries significantly w.r.t. a standard CB approach. As shown
in [PGH21], [TSH*19], OSTRICH is the only solution that
can handle histories for large RDF graphs, such as DBpedia.
That said, scalability still remains a challenge for OSTRICH
because aggregated changesets grow monotonically. This leads
to prohibitive ingestion times for large histories [PGH21],
[TMVV22] — even when the original changesets are small. In
this paper, we build upon OSTRICH and propose a solution
to this problem.

III. STORING ARCHIVES WITH MULTIPLE DELTA CHAINS

As discussed in Section II, ingesting new revisions as
aggregate changesets can quickly become prohibitive for long
revision histories when the RDF archive is stored in a single
delta chain (see Figure la). In such cases, we propose the
creation of a fresh snapshot that becomes the new reference
for subsequent deltas. Those new deltas will be smaller, and
thus easier to build and maintain. They will also constitute a
new delta chain as depicted in Figure 1b.
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(a) Single delta chain (b) Multiple delta chains

Fig. 1: Delta chain architectures

A. Delta Chains

While creating a fresh snapshot with a new delta chain
should presumably reduce ingestion time for subsequent revi-
sions, its impact on query efficiency seems mixed. V queries,
for instance, will have to be evaluated on multiple delta chains,
becoming more challenging to answer. In contrast, VM queries
defined on revisions already materialized as snapshots should
be executed much faster. Storage size and DM response time
may be highly dependent on the actual evolution of the data. If



a new version includes many deletions, fresh snapshots may
be smaller than aggregated deltas. We highlight that in our
proposed architecture, revisions stored as snapshots also exist
as aggregated deltas w.r.t. the previous snapshot — as shown
for revision 2 in Figure 1b. Such a design decision allows us
to speed up DM queries as explained later.

It follows from the previous discussion that introducing
multiple snapshots and delta chains raises a natural question:
"When is the right moment to create a snapshot?” We
elaborate on this question from the perspectives of storage,
ingestion time, and query efficiency next. We then explain how
to query archives in a multi-snapshot setting in Section IV.

B. Strategies for Snapshot Creation

A key aspect of our proposed design is to determine
the right moment to place a snapshot, as this decision is
subject to a trade-off among ingestion speed, storage size,
and query performance. We formalize this decision via an
abstract snapshot oracle f : A x U — {0,1} that, given an
archive A € A with k revisions and a changeset u,_1,, € U,
decides whether revision k£ should (1) or should not (0) be
materialized as a snapshot — otherwise the revision is stored
as an aggregated delta. The oracle can rely on properties of
the archive and the input changeset to make a decision. In
the following, we describe some natural alternatives for our
snapshot oracle f and illustrate them with a running example
(Table I). All strategies start with a snapshot at revision O.
Note that we do not provide an exhaustive list of all possible
strategies one could implement.

Baseline. The baseline oracle never creates snapshots, except
for the very first revision, i.e., f(A,u) = (A = (). This is
akin to OSTRICH’s snapshot policy [TSHT19].

Periodic. A new snapshot is created when a fixed number
d of versions has been ingested as aggregated deltas, i.e.,
f(Au) = (JA] mod (d+ 1) = 0). We call d the period.
Change-ratio. Long delta chains do not only incur longer
ingestion times but also higher disk consumption due to redun-
dancy in the aggregated changesets. When low disk usage is
desired, the snapshot strategy may take into account the editing
dynamics of the RDF graph. This notion has been quantified
in the literature via the change ratio score [FUPK19]:
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Given two revisions ¢ and j, the change ratio normalizes
the number of changes (additions and deletions) between the
revisions by their joint size. If we aggregate the change ratios
of all the revisions coming after a snapshot revision s, we
can estimate the level of redundancy in the current delta
chain. A reasonable snapshot strategy would therefore bound
Zf:sﬂés,i’ put differently: f(A,u) = (v < Z?:SH 0s.4)
for some user-defined budget threshold v € R~ .

Time. If we denote by t; the time required to ingest revision
k as an aggregated changeset in an archive A, this oracle is
implemented as f(A,u) = (% > ), where s+ 1 is the first

- Lol .
revision stored as an aggregated changeset in the current delta

(D

chain. This strategy therefore creates a new snapshot as soon
as ingestion takes # times longer than the ingestion of version
s+ 1.

Version (k) 0 1 2 3 4 5

Ju; ] 100 20 20 20 20 20

|u;j| 0 10 10 10 10 10
Zf:Hl Os.i - 023 061 1.08 0.19 051
tr - 1.00 150 225 3.38 1.0

Baseline S A A A A A
Periodic (d = 2) N A S A S A
Change ratio (y = 1.0) S A A S A A
Time (6 = 3.0) S A A A S A

TABLE I: Creation of snapshots according to the different
strategies on a toy RDF graph comprised of 100 triples and
5 revisions defined by changesets. An S denotes a snapshot
whereas a A denotes an aggregated changeset.

IV. QUERYING ARCHIVES WITH MULTIPLE DELTA CHAINS

In the following, we detail our algorithms to compute ver-
sion materialization (VM), delta materialization (DM), and V
(version) queries on RDF archives with multiple delta chains.
As is common in other RDF archiving approaches [TSH19],
we focus our algorithms on answering single triple patterns
queries, since they constitute the building blocks for more
complex query answering, which is outside the scope of this
work. All the routines described next are defined w.r.t. to an
implicit RDF archive .A.

A. VM Queries

In a single delta chain with aggregated deltas and reference
snapshot s, executing a VM query with triple pattern p on a
revision 4 requires us to materialize the target revision as G; =
(Gs U ujl) \u; and then execute p on G;. In our baseline,
s = 0; in the presence of multiple delta chains s = snapshot(4)
corresponds to ¢’s reference snapshot in the archive’s history.
Our implementation relies on OSTRICH, which can efficiently
compute GG; and run queries on top of it.

B. DM Queries

The procedure gueryDM in Algorithm 1 describes how to
answer a DM query on two revisions ¢ and j (z < j) with
triple pattern p on an RDF archive with multiple delta chains.
The algorithm relies on two important sub-routines. The first
one, denoted deltaDiff, executes standard DM queries on single
triple patterns over a single delta chain as proposed by OS-
TRICH [TSH'19]. The second routine, called snapshotDiff,
computes the difference between the results of p on two
reference snapshots S;, S;. It works by first testing if the
delta chains of S; and S; are not consecutive (line 2). If they
are not, snapshotDiff implements a set-difference between p’s
results on S; and S; (lines 4-5). In case the snapshots define
consecutive delta chains, we leverage the fact that S; also
exists as an aggregated delta w.r.t. S; (see Section III-A). We
can therefore treat this case efficiently as a standard DM query
via deltaDiff (line 7).



Algorithm 1 DM query algorithm

1: function SNAPSHOTDIFF(S;, S}, p)
> snapshots S;, S;, triple pattern p

2: d < distance(i, 7)

3: if d > 1 then

4: @i < query(S;,p); q; < query(S;,p)

5: delta < (¢; \ @) U (a0 \ ¢;)

6: else

7: delta = deltaDiff(, j, p)

8: end if

9: return delta

10: end function

11:

12: function QUERYDM(4, j, p) © versions 4, j, triple pattern p
13: sid; < snapshot(i); sid; < snapshot(j)

14: if sid; = sid; then © 4 and j in the same delta-chain
15: delta < deltaDiff(i, j,p)

16: else > ¢ and j not in the same delta-chain

17: Usi,s; — snapshotDiff(sid;, sid;, p)

18: Usi,iy Usj,j 0

19: if i # sid; then 0 test if version 7 is a delta
20: Usi,i < deltaDiff(sid;, 1, p)

21: end if

22: if j # sid; then b test if version j is a delta
23: Usj,; < deltaDiff(sid;, j, p)

24: end if

25: Uj,s; — mergeBackwards(us; i, Us; sj)

26: delta <— mergeForward(u; s;,Us;, ;)

27: end if

28: return delta

29: end function

We now have the elements to explain the main DM query
procedure (queryDM). First, it checks whether both revisions
are in the same delta chain, i.e., if they have the same reference
snapshot (line 14). If so, the problem boils down to a single
delta chain DM query that can be answered with deltaDiff
(line 15). Otherwise, we invoke the routine snapshotDiff on the
reference snapshots (line 17) to compute the results’ difference
between the delta chains. This is denoted by ds.

If revisions ¢ and j are not snapshots themselves, lines 20
and 23 compute the changes between the target versions and
their corresponding reference snapshots — denoted by u; ; and
Ugj,5. The last steps, i.e., lines 25 and 26, merges the inter-
mediate results to produce the final output. First, the routine
mergeBackwards merges u; s, 1.€., the changes between the
two delta chains, with ug; ;, i.e., the changes within the first
delta chain. This routine is designed as a regular sorted merge
because triples are already sorted in the OSTRICH indexes.
Unlike a classical merge routine, mergeBackwards inverts the
flags of the changes present in ug; ; but not in ug; ;. Indeed,
if a change in ug;; did not survive to the next delta chain,
it means it was later reverted in revision sid;. The result of
this operation are therefore the changes between revisions
and sid;, which we denote by wu; ;. The final merge step,

mergeForward, combines u; ,; with the changes in the second
delta chain, i.e., us; ;. The routine mergeForward runs also a
sorted merge, but now triples with opposite change flag present
in both changesets are filtered from the final output as they
indicate revertion operations.

C. V Queries

Algorithm 2 V query algorithm

1: function QUERYV(p) > p a triple pattern

2: r<0

3: for c € C do > C the list of delta chains

4: v < singleQueryV(c, p)

5: r < merge(r,v) > merge intermediate results
6: end for

7: return r

8:

end function

Algorithm 2 describes the process of executing a V query
p over multiple delta chains. This relies on the capability
to execute V queries on individual delta chains implemented
in OSTRICH [TSH™'19] via the function singleQueryV. The
routine iterates over the list of delta chains (line 3), and runs
singleQueryV on each delta chain (line 4). This gives us triples
annotated with lists of versions within the range of the delta
chain. At each iteration we carry out a merge step (line 5) that
consists of a set union of the triples from the current delta
chain and the results seen so far. When a triple is present in
both sets, we merge their lists of versions.

V. IMPLEMENTATION

We implemented the proposed snapshot creation strate-
gies and query algorithms for RDF archives on top of OS-
TRICH [TSH*19]. We briefly explain the most important
aspects of our implementation.

Storage. An RDF archive consists of a snapshot for revision
0 and a single delta chain of aggregated changesets for the
upcoming revisions (Fig. 1a). The snapshot is stored as an
HDT [FMG™13] file, whereas the delta chain is materialized
in two stores: one for additions and one for deletions. Each
store consists of 3 indexes in different triple component
orders, namely SPO, OSP, and POS, implemented as B+trees.
Keys in those indexes are individual triples linked to version
metadata, i.e., the revisions where the triple is present and
absent. Besides the change stores, there is an index with
addition and deletion counts for all possible triple patterns,
e.g., ( ?s, ?p, 20 ) or { ?s, cityln, ?0 ), which can be used
to efficiently compute cardinality estimations — particularly
useful for SPARQL engines.

Dictionary. As common in RDF stores [NW10], [WKBOS],
RDF terms are mapped to an integer space to achieve efficient
storage and retrieval. Two disjoint dictionaries are used in
each delta chain: the snapshot dictionary (using HDT) and
the delta chain dictionary. Hence, our multi-snapshot approach
uses D x 2 (potentially non-disjoint) dictionaries, where D is
the number of delta chains in the archive.



Ingestion. The ingestion routine depends on whether a revi-
sion will be stored as an aggregated delta or as a snapshot.
For revision 0, our ingestion routine takes as input a full RDF
graph to build the initial snapshot. For subsequent revisions,
we take as input a standard changeset ug_1 (4| = k),
and use OSTRICH to construct an aggregated changeset of
the form wu, y, where revision s = snapshot(k) is the latest
snapshot in the history. When the snapshot policy decides to
materialize a revision s’ as a snapshot, we use the aggre-
gated changeset u, s to compute the snapshot efficiently as
Gy = (Gs \ug ) U ujs
Change-ratio estimations. The change-ratio snapshot strategy
computes the cumulative change ratio of the current delta chain
w.r.t. a reference snapshot s to decide whether to create a
new snapshot or not. We therefore store the approximated
change ratios d,; of each revision in a key-value store. To
approximate each d, according to Equation 1, we rely on
OSTRICH’s count indexes. The terms |u, | and |u_, | can be
obtained from the count indexes of the fully unbounded triple
pattern ( ?s, ?p, 20 ) in O(1) time. We estimate |G U G| as
|Gs| + |u:r ;| where |G| is efficiently provided by HDT.
The source code of our implementation as well as the
experimental scripts to reproduce this paper are available in a
Zenodo archive?.

VI. EXPERIMENTS

To determine the effectiveness of our multi-snapshot ap-
proach for RDF archiving, we evaluate the four proposed
snapshot creation strategies along three dimensions: ingestion
time (Section VI-B), disk usage (Section VI-C), and query
runtime for VM, DM, and V queries (Section VI-D).

A. Experimental Setup

We resort to the BEAR benchmark for RDF
archives [FUPK19] for our evaluation. BEAR comes in
three flavors: BEAR-A, BEAR-B, and BEAR-C, which
comprise a representative selection of different RDF graphs
and query loads. We omit BEAR-C from our experiments
because its query load consists of full SPARQL queries
and diverse constructs, which are not supported by our
implementation, nor by any other RDF archiving approaches.
Table II summarizes the characteristics of the experimental
datasets and query loads. Due to the very long history of
BEAR-B instant, OSTRICH could only ingest one third
of the archive’s history (7063 out 21046 revisions) after
one month of execution. In a similar vibe, OSTRICH took
one month to ingest the first 18 revisions (out of 58) of
BEAR-A. Despite the dataset’s short history, changesets in
BEAR-A are in the order of millions of changes, which also
makes ingestion intractable in practice. On these grounds,
the original OSTRICH paper [TSHT19] omitted BEAR-B
instant and included only the first 10 versions of BEAR-A.
Multi-snapshot solutions, on the other hand, allow us to
manage these datasets. All our experiments were run on a

3https://doi.org/10.5281/zenodo. 7256988

Linux server with a 16-core CPU (AMD EPYC 7281), 256
GB of RAM, and 8TB hard disk drive.

BEAR-B
BEAR-A Daily Hourly Instant
# versions 58 89 1299 21046
) 33K - 33K - 33K -
|G;|’s range  30M - 66M AAK AAK 44K
1A] 22M 942 198 23
# queries 368 62 (49 7P? and 13 ?PO)

TABLE II: Dataset characteristics. |G;| is the size of the
individual revisions, |A| denotes the average size of the
individual changesets wuy_1 k.

We evaluate the different strategies for snapshot creation
detailed in Section III-B along ingestion speed, storage size,
and query runtime. Except for our baseline (OSTRICH),
all our strategies are defined by parameters that we adjust
according to the dataset:

Periodic. This strategy is defined by the period d. We set
d € {2,5} for BEAR-A, d € {5,10} for BEAR-B daily,
d € {50,100} for BEAR-B hourly, and d € {100,500}
for BEAR-B instant. Values of d were adjusted per dataset
experimentally w.r.t. the length of the revision history and the
baseline ingestion time. High periodicity, i.e., smaller values
for d, lead to more and shorter delta chains.

Change-ratio (CR). This strategy depends on a cumulative
change-ratio budget threshold . We set v € {2.0,4.0} for
all the tested datasets. v = 2.0 yields 10 delta chains for
BEAR-A, as well as 5, 23, and 151 delta chains for BEAR-B
daily, hourly, and instant, respectively. For v = 4.0, we obtain
instead 6 delta chains for BEAR-A, and 3, 16, and 98 for the
BEAR-B alternatives.

Time. This strategy depends on the ratio 6 between the
ingestion time of the new revision and the ingestion time of
the first delta in the current delta chain. We set 6 = 20 for
all datasets. This produces 3, 26, and 293 delta chains for the
daily, hourly, and instant variants of BEAR-B respectively, and
2 delta chains for BEAR-A.

We omit the reference systems included with the BEAR bench-
mark since they are outperformed by OSTRICH [TSH*19].

B. Ingestion Time

Table III depicts the total time to ingest the experimental
datasets. Since we always test two different values of d for
the periodic strategy on each dataset, in both Table III and
IV, we refer to them as “high” and “low” periodicity. This
is meant to abstract away the exact parameters, which vary
for each dataset, so that we can focus instead on the effects
of higher/lower periodicity. We remind the reader that the
baseline (OSTRICH) cannot ingest BEAR-A and BEAR-B
instant in a reasonable amount of time. This explains their
absence in Table III. But even when OSTRICH can ingest
the entire history (in less than 26 hours), a multi-snapshot
strategy still incurs a significant speed-up. This becomes more
significant for long histories as observed for BEAR-B hourly,
where the speed-up can reach two orders of magnitude. The
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Fig. 2: Detailed ingestion times (log scale) per revision. We include the first 1500 revisions for BEAR-B instant since the

runtime pattern is recurrent along the entire history.

BEAR-B

BEAR-A  Daily Hourly Instant

High Periodicity = 13472.16  0.67 12.95 57.89
Low Periodicity =~ 14499.45  0.98 23.05 298.36
CR~y=2.0 20505.93 1.88 13.79 77.01
CR v =4.0 21588.25 234 19.47 114.83
Time 6 = 20 49506.15  2.64 15.83 43.53

Baseline - 6.89 1514.85 -

TABLE III: Ingestion times in minutes

BEAR-B

BEAR-A  Daily  Hourly Instant

High Periodicity =~ 72417.47  199.17  322.34 228343
Low Periodicity ~ 49995.00 102.96 185.33  787.75
CR~y =20 47335774 5149 28447  1690.38
CR v=4.0 42203.04 3791 211.71  1175.15
Time 6 = 20 46614.98  38.33 325.13 397232

Baseline - 19.82 644.50 -

TABLE IV: Disk usage in MB

good performance of the high periodicity strategy and change-
ratio with the smaller budget threshold v = 2.0 suggests that
shorter delta chains are beneficial for ingestion time. This is
confirmed by Fig. 2, where we also notice that ingestion time
reaches a minimum for the revisions following a snapshot.

C. Disk Usage

Unlike ingestion time where shorter delta changes are
clearly beneficial, the gains in terms of disk usage need fine-
grained tuning because they depend on the dataset as shown
in Table IV. Overall, more delta chains tend to increase disk
usage. For BEAR-B daily, frequent snapshots (high periodicity
d = 5) incur a large overhead w.r.t. the baseline because the
changesets are small and the revision history is short. Similar
results are observed for BEAR-A and BEAR-B instant, even
though we still need multiple snapshots to be able to ingest
the data. BEAR-B hourly is interesting because it shows that
for long histories, a single delta chain can be inefficient in
terms of disk usage. Interestingly for BEAR-A, the change-
ratio v = 4.0 uses less storage than the time strategy with
60 = 20, despite using more delta chains. This hints that
very large aggregated deltas are also inefficient compared
to multiple delta chains with smaller aggregated deltas. For
BEAR-B instant, the good performance of the change-ratio

strategies and the low periodicity strategy (d = 500) suggests
that a few delta chains can provide significant space savings.
On the other hand, the time strategy with § = 20 performs
slight worse because it creates too many delta chains.

D. Query Runtime

In this section we evaluate the impact of our snapshot
creation strategies on query runtime. We use the queries
provided with the BEAR benchmark for BEAR-A and BEAR-
B. These are DM, VM, and V queries on single triple patterns.
Each individual query was executed 5 times and the runtimes
averaged. All the query results are depicted in Figure 3.

1) VM queries: We report the average runtime of the
benchmark VM queries for each version ¢ in the archive. The
results are depicted in Figures 3a, 3d, 3g, and 3j. We report
runtimes in micro-seconds for all strategies.

Using multiple delta chains is consistently beneficial for
VM query runtime, which is best when the target revision was
materialized as a snapshot. When it is not the case, runtime is
proportional to the size of the delta chain, which depends on its
length and the volume of changes that must be applied to the
snapshot before running the query. This is obvious for BEAR-
A with the time 6 = 20 strategy, which splits the history into
two imbalanced delta-chains, where one of them contains the
first 53 revisions (out of 58).

2) DM Queries: We report for each revision ¢ in the
archive the average runtime of the benchmark DM queries
between revisions ( 0, i ) and ( 7, i ). Such a setup tests the
query routine in all possible scenarios: between two snapshots,
between a snapshot and a delta (and vice versa), and between
two deltas. The results are depicted in Figures 3b, 3e, 3h, and
3k. The results shows a rather mixed benefit of multiple delta
chains in query runtime: highly positive for the long history
of BEAR-B hourly and negligible for BEAR-B daily. Overall,
DM queries benefit from short delta chains as illustrated by
Figure 3b and to a lesser degree by the periodic strategy with
d = 5 in Figure 3e. All our strategies beat the baseline by
a large margin on BEAR-B hourly because delta operations
become very expensive as the single delta chain grows. That
said, the baseline runtime tends to decrease slightly with
because the data from two distant versions tends to diverge
more, which requires the engine to filter fewer results from
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Fig. 3: Query results for the BEAR benchmark

the aggregated deltas. For BEAR-B daily, multiple delta chains
may perform comparably or slightly worse — by no more than
20% — than the baseline. This happens because BEAR daily’s
history is short, and hence efficiently manageable with a single
delta chain. In this case the overhead of multiple snapshots and
delta chains does not bring any advantage for DM queries.

3) V Queries: Figure 3c, 3f, 3i, and 31 show the total
runtime of the benchmark V queries on the different datasets.
V queries are the most challenging queries for the multi-
snapshot archiving strategies as suggested by Figures 3f and 3i.
As described in Algorithm 2, answering V queries requires us

to query each delta chain individually, buffer the intermediate
results, and then merge them. It follows that runtime scales
proportionally to the number of delta chains, which means
that contrary to DM and VM queries, many short delta chains
are detrimental to V query performance. Nonetheless, querying
datasets such as BEAR-A and BEAR-B instant is only possible
with a multi-snapshot solution.

E. Discussion

We now summarize our findings and draw a few design
lessons for RDF archives.



o For small datasets, small changesets, or relatively short
histories, the overhead of multi-snapshot strategies does not
pay off in terms of query runtime and disk usage. This
observation is particularly striking for V queries for which
runtime increases with the number of delta chains.

« While many short delta chains are detrimental to V queries
and often to storage consumption, they are mostly benefitial
for VM and DM queries because these query types require
us to iterate over changes within delta chains (two in the
worst case of DM queries). Moreover, short delta chains
reduce ingestion time systematically.

« Disk usage usually benefit from less numerous delta chains,
except for long change history and large aggregated deltas.

o Change-ratio strategies strike an interesting trade-off be-
cause they take into account the amount of data stored
in the delta chain as criterion to create a snapshot. This
ultimately has a direct positive effect on ingestion time,
VM/DM querying, and storage size.

The bottom line is that the snapshot creation strategy for RDF
archives is subject to a trade-off among ingestion time, disk
consumption, and query runtime for VM, DM, and V queries.
As shown in our experimental section, there is no one-size-
fits-all strategy. The suitability of a strategy depends on the
application, namely the users’ priorities or constraints, the
characteristics of the archive (snapshot size, history length,
and changeset size), and the query load. For example, im-
plementing version control for a collaborative RDF graph
will likely yield an archive like BEAR-B instant, i.e., a very
long history with many small changes and VM/DM queries
mostly executed on the latest revisions. Depending on the
server’s capabilities and the frequency of the changes, the
storage strategy could therefore rely on the change ratio or
the ingestion time ratio and be tuned to offer arbitrary latency
guarantees for ingestion. On a different note, a user doing
data analytics on the published versions of DBpedia (as done
in [PGH21]) may be confronted to a dataset like BEAR-A and
therefore resort to numerous snapshots, unless their query load
includes many real-time V queries.

VII. CONCLUSION

In this paper we have presented a hybrid storage approach
for RDF archiving based on multiple snapshots and chains
of aggregated deltas. We studied different snapshot creation
strategies and discussed the trade-offs in terms of inges-
tion time, storage size, and query runtime. Our experimental
evaluation shows that our techniques allow us to handle
very long revision histories that could not be managed by
previous approaches. Moreover, we drew a set of design
lessons for RDF archive design that can help users decide
the best strategy based on the application scenario. As future
work, we plan to develop more complex snapshot strategies,
e.g., based on machine learning. Moreover, the development
of more efficient encoding and serialization techniques for
timestamped deltas is a promising research avenue to further
lower storage size. We also plan to study the impact of our
techniques on the performance of SPARQL query execution

and consider improvements within the landscape of alternative
RDF representations and indexing approaches [SLPH22].
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